People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Vermeulen, Paul. A.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (5/5 displayed)
- 2019Multilevel reflectance switching of ultrathin phase-change filmscitations
- 2019Low temperature epitaxy of tungsten-telluride heterostructure filmscitations
- 2018Combining Ultrafast Calorimetry and Electron Microscopycitations
- 2016Crystallization Kinetics of Supercooled Liquid Ge-Sb Based on Ultrafast Calorimetrycitations
- 2014Reversible amorphous-crystalline phase changes in a wide range of Se1-xTex alloys studied using ultrafast differential scanning calorimetrycitations
Places of action
Organizations | Location | People |
---|
article
Combining Ultrafast Calorimetry and Electron Microscopy
Abstract
Reversible amorphous−crystalline phase transitions are studied using<br/>complementary ultrafast differential scanning calorimetry and transmission electron microscopy techniques, which together allow a wealth of thermal and structural properties to be determined. The SeTe(As) system is investigated because these chalcogenide based materials have favorable properties as a phase-change memory material and in optical systems. Using calorimetry, we find that the addition of 10 at. % As to SeTe alloys strongly increases their glass forming ability, increasing both glass transition and crystallization temperatures while reducing critical quench rate. Ex situ investigation of SexTe90−xAs10 using electron microscopy and elemental mapping reveals a two-phase lamellar segregation mechanism, where a trigonal SeTe-phase and an amorphous As-rich phase are formed. These findings demonstrate the power of combining thermal and structural analysis techniques.