People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Celania, Chris
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2023The Prolific Ternary System Pt/Sn/Ndcitations
- 2023The Prolific Ternary System Pt/Sn/Nd:Insertion of Pt into the Structures of Sn/Nd Intermetallics Yields Structural Complexity and Wealthcitations
- 2020Ternary Polar Intermetallics within the Pt/Sn/R Systems (R = La-Sm)citations
- 2018R14(Au, M)51 (R = Y, La-Nd, Sm-Tb, Ho, Er, Yb, Lu; M = Al, Ga, Ge, In, Sn, Sb, Bi)citations
- 2018R14(Au, M)51(R = Y, La-Nd, Sm-Tb, Ho, Er, Yb, Lu; M = Al, Ga, Ge, In, Sn, Sb, Bi): Stability Ranges and Site Preference in the Gd14Ag51Structure Typecitations
- 2018Bringing order to large-scale disordered complex metal alloyscitations
- 2017R3Au9Pn (R = Y, Gd-Tm; Pn = Sb, Bi): A Link between Cu10Sn3 and Gd14Ag51citations
- 2017R3Au9Pn (R = Y, Gd-Tm; Pn = Sb, Bi)citations
Places of action
Organizations | Location | People |
---|
article
R14(Au, M)51 (R = Y, La-Nd, Sm-Tb, Ho, Er, Yb, Lu; M = Al, Ga, Ge, In, Sn, Sb, Bi)
Abstract
<p>Twenty new ternary representatives of the Gd<sub>14</sub>Ag<sub>51</sub> structure type have been synthesized within the R-Au-M family (R = Y, La-Nd, Sm-Tb, Ho, Er, Yb, Lu; M = Al, Ga, Ge, In, Sn, Sb, Bi) using solid state synthesis techniques. The list of post transition metals (M) involved in the formation of this type of structure could be augmented by five new representatives. All compounds crystallize in the hexagonal space group P6/m (#175) with the unit cell ranges of a = 12.3136(2)-12.918(1) Å and c = 8.9967(3)-9.385(1) Å, and incorporate different degrees of Au/M mixing. The involvement of the post transition element in the structure varies from one to another compound both qualitatively and quantitatively. A rather significant phase width can be expected for the majority of compounds, however, not without exclusions. The distribution of the post transition metals within the structure has been analyzed via single crystal X-ray diffraction. While the positional disorder of one near-origin Au position is expectable for all compounds due to steric reasons, two specimens show an obvious deviation from the others including another Au position split along the c axis. Possible factors affecting this behavior are discussed.</p>