People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Konstas, Kristina
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2022Charge carrier molecular sieve (CCMS) membranes with anti-aging effect for long-life vanadium redox flow batteriescitations
- 2020Engineered Porous Nanocomposites That Deliver Remarkably Low Carbon Capture Energy Costscitations
- 2019Thermally Rearranged Mixed Matrix Membranes (TR-MMM) for Permeability Enhancement and Mechanical Toughnesscitations
- 2017Post-Synthetic Annealing: Linker Self-Exchange in UiO-66 and its Effect on Polymer-MOF Interactioncitations
- 2017Materials Genome in Action: Identifying the Performance Limits of Physical Hydrogen Storagecitations
- 2016Physical aging in glassy mixed matrix membranes; tuning particle interaction for mechanically robust nanocomposite filmscitations
- 2015Lead(II) uptake by aluminium based magnetic framework composites (MFCs) in watercitations
- 2012Methane storage in metal organic frameworkscitations
- 2012Magnetic framework composites for polycyclic aromatic hydrocarbon sequestrationcitations
Places of action
Organizations | Location | People |
---|
article
Post-Synthetic Annealing: Linker Self-Exchange in UiO-66 and its Effect on Polymer-MOF Interaction
Abstract
Post-Synthetic Exchange (PSE) and Defect Engineering have emerged as powerful techniques for tuning the properties and introducing novel functionality to Metal Organic Frameworks (MOFs). Growing evidence suggests that each technique plays a key role in the mechanism of the other: linker coordination chemistry is pivotal to defective frameworks, while defect sites can help initiate PSE. Here, the intersection of these approaches is explored by exchanging a MOF with linkers already present within the framework. Post-Synthetic Annealing (PSA) modifies a MOF’s properties by redistributing the framework’s mixture of bound linker/modulator species. Using changes to the polymer-additive interactions in PTMSP (poly-1-trimethylsilyl-1-propyne) nanocomposites observed through aging, we demonstrate that PSA causes one linker species to preferentially accumulate on the MOF’s crystal surface. Reaction conditions are shown to affect molecular composition of the resulting annealed UiO-66 MOFs; a finding explained through established reaction constants. This work simultaneously reveals intricacies of Post-Synthetic Modification (PSM) chemistry and presents a facile means of tuning MOFs and MOF nanocomposites.