People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Steinberg, Simon
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2024Insights into a Defective Potassium Sulfido Cobaltate: Giant Magnetic Exchange Bias, Ionic Conductivity, and Electrical Permittivity
- 2021Exploring the frontier between polar intermetallics and Zintl phases for the examples of the prolific ALnTnTe<sub>3</sub>-type alkali metal (A) lanthanide (Ln) late transition metal (Tn) telluridescitations
- 2021Approaching the Glass Transition Temperature of GeTe by Crystallizing Ge 15 Te 85citations
- 2021Approaching the Glass Transition Temperature of GeTe by Crystallizing Ge<sub>15</sub>Te<sub>85</sub>citations
- 2020Revealing the Bonding Nature in an ALnZnTe3-Type Alkaline-Metal (A) Lanthanide (Ln) Zinc Telluride by Means of Experimental and Quantum-Chemical Techniquescitations
- 2017Layered Structures and Disordered Polyanionic Nets in the Cation-Poor Polar Intermetallics CsAu1.4Ga2.8 and CsAu2Ga2.6citations
- 2016Gold in the Layered Structures of R3Au7Sn3: From Relativity to Versatilitycitations
- 2016Gold in the Layered Structures of R3Au7Sn3citations
- 2015Cation-Poor Complex Metallic Alloys in Ba(Eu)-Au-Al(Ga) Systemscitations
- 2015Crystal Structure and Bonding in BaAu5Ga2 and AeAu4+ xGa3- x (Ae = Ba and Eu)citations
- 2015Gold-rich R3Au7Sn3: establishing the interdependence between electronic features and physical propertiescitations
- 2015Gold-rich R3Au7Sn3citations
Places of action
Organizations | Location | People |
---|
article
Layered Structures and Disordered Polyanionic Nets in the Cation-Poor Polar Intermetallics CsAu1.4Ga2.8 and CsAu2Ga2.6
Abstract
<p>Gold intermetallics are known for their unusual structures and bonding patterns. Two new compounds have been discovered in the cation-poor part of the Cs-Au-Ga system. Both compounds were obtained directly by heating the elements at elevated temperatures. Structure determinations based on singlecrystal X-ray diffraction analyses revealed two structurally and compositionally related formations: CsAu1.4Ga2.8 (I) and CsAu2Ga2.6 (II) crystallize in their own structure types (I: R3, a = 11.160(2) Å, c = 21.706(4) Å, Z = 18; II: R3, a = 11.106(1) Å, Å, c = 77.243(9) Å, Z = 54) and contain hexagonal cationic layers of cesium. This is a unique structural motif, which has never been observed for the other (lighter) alkali metals in combination with Au and post transition elements. The polyanionic part is characterized in contrast by Au/Ga tetrahedral stars, a structural feature that is characteristic for light alkali metal representatives, and disordered sites with mixed Au/Ga occupancies that occur in both structures with a more significant disorder in the polyanionic component of CsAu<sub>2</sub>Ga<sub>2.6</sub>. Examinations of the electronic band structure for a model approximating the composition of CsAu<sub>1.4</sub>Ga<sub>2.8</sub> have been completed using density-functional-Theory-based methods and reveal a deep pseudogap at E<sub>F</sub>. Bonding analysis by evaluating the crystal orbital Hamilton populations show dominant heteroatomic Au-Ga bonds and only a negligible contribution from Cs pairs.</p>