Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Soshnikov, I. P.

  • Google
  • 2
  • 19
  • 50

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2020Optical properties of InGaN/GaN QDs nanorods by top-down fabrication after KOH treatmentcitations
  • 2016Origin of Spontaneous Core-Shell AIGaAs Nanowires Grown by Molecular Beam Epitaxy50citations

Places of action

Chart of shared publication
Kiseleva, Elena
1 / 1 shared
Menzelincev, A. K.
1 / 1 shared
Kotlyar, K. P.
1 / 1 shared
Nikitina, E. V.
1 / 1 shared
Cirlin, G. E.
2 / 3 shared
Kryzhanovskaya, N. V.
1 / 1 shared
Dragunova, A. S.
1 / 1 shared
Berezovskaya, T. N.
1 / 1 shared
Smolina, E. O.
1 / 1 shared
Shilov, V. A.
1 / 1 shared
Shcherbakova, V. B.
1 / 1 shared
Khrebtov, A. I.
1 / 1 shared
Samsonenko, Yu. B.
1 / 1 shared
Akopian, Nika
1 / 7 shared
Dubrovskii, V. G.
1 / 1 shared
Kasama, Takeshi
1 / 29 shared
Reznik, R. R.
1 / 1 shared
Shtrom, I. V.
1 / 1 shared
Rouvimov, S.
1 / 4 shared
Chart of publication period
2020
2016

Co-Authors (by relevance)

  • Kiseleva, Elena
  • Menzelincev, A. K.
  • Kotlyar, K. P.
  • Nikitina, E. V.
  • Cirlin, G. E.
  • Kryzhanovskaya, N. V.
  • Dragunova, A. S.
  • Berezovskaya, T. N.
  • Smolina, E. O.
  • Shilov, V. A.
  • Shcherbakova, V. B.
  • Khrebtov, A. I.
  • Samsonenko, Yu. B.
  • Akopian, Nika
  • Dubrovskii, V. G.
  • Kasama, Takeshi
  • Reznik, R. R.
  • Shtrom, I. V.
  • Rouvimov, S.
OrganizationsLocationPeople

article

Origin of Spontaneous Core-Shell AIGaAs Nanowires Grown by Molecular Beam Epitaxy

  • Khrebtov, A. I.
  • Samsonenko, Yu. B.
  • Akopian, Nika
  • Soshnikov, I. P.
  • Dubrovskii, V. G.
  • Cirlin, G. E.
  • Kasama, Takeshi
  • Reznik, R. R.
  • Shtrom, I. V.
  • Rouvimov, S.
Abstract

Based on the high-angle annular dark-field scanning transmission electron microscopy and energy dispersive X-ray spectroscopy studies, we unravel the origin of spontaneous core shell AlGaAs nanowires grown by gold-assisted molecular beam epitaxy. Our AlGaAs nanowires have a cylindrical core and a tapered shell. The composition of the shell is close to nominal, while the aluminum content in the core is systematically smaller than nominal. After switching off the group III fluxes, the aluminum content in the droplet and in the topmost part of the nanowire rapidly tends to zero, while gallium remains there at a high percentage. We present a quantitative model to explain these findings. Lower aluminum composition in the core is attributed to its lower surface diffusivity, with the aluminum collection length of 250 nm against 780 nm for gallium at the substrate temperature 510 degrees C and under the nominal aluminum content of 0.2. These values decrease to 8 and 160 nm when the nominal aluminum content is raised to 0.6. On the other hand, aluminum leaves the droplet at least 100 times faster than gallium, with a typical bonding rate with arsenic on the order of 1000 nm/s.

Topics
  • impedance spectroscopy
  • surface
  • aluminium
  • gold
  • transmission electron microscopy
  • diffusivity
  • X-ray spectroscopy
  • Arsenic
  • Gallium
  • surface diffusivity