People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Shields, Philip, A.
University of Bath
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (13/13 displayed)
- 2023Selective Area Growth of GaAs Nanowires and Microplatelet Arrays on Silicon by Hydride Vapor-Phase Epitaxycitations
- 2023Importance of As and Ga Balance in Achieving Long GaAs Nanowires by Selective Area Epitaxycitations
- 2022Etching of the SiGaxN yPassivation Layer for Full Emissive Lateral Facet Coverage in InGaN/GaN Core-Shell Nanowires by MOVPEcitations
- 2021Employing Cathodoluminescence for Nanothermometry and Thermal Transport Measurements in Semiconductor Nanowirescitations
- 2021Point Defects in InGaN/GaN Core-Shell Nanorodscitations
- 2020Structural and luminescence imaging and characterisation of semiconductors in the scanning electron microscopecitations
- 2020Influence of the reactor environment on the selective area thermal etching of GaN nanohole arrayscitations
- 2017Evolution of the m-plane Quantum Well Morphology and Composition within a GaN/InGaN Core-Shell Structurecitations
- 2013Coalescence-induced planar defects in GaN layers grown on ordered arrays of nanorods by metal–organic vapour phase epitaxycitations
- 2012Growth of crack-free GaN epitaxial thin films on composite Si(111)/polycrystalline diamond substrates by MOVPEcitations
- 2011Advances in nano-enabled GaN photonic devices
- 2009Enhanced light extraction by photonic quasi-crystals in GaN blue LEDscitations
- 2007Pulsed epitaxial lateral overgrowth of GaN by metalorganic vapour phase epitaxy
Places of action
Organizations | Location | People |
---|
article
Evolution of the m-plane Quantum Well Morphology and Composition within a GaN/InGaN Core-Shell Structure
Abstract
GaN/InGaN core–shell nanorods are promising for optoelectronic applications due to the absence of polarization-related electric fields on the sidewalls, a lower defect density, a larger emission volume, and strain relaxation at the free surfaces. The core–shell geometry allows the growth of thicker InGaN shell layers, which would improve the efficiency of light emitting diodes. However, the growth mode of such layers by metal organic vapor phase epitaxy is poorly understood. Through a combination of nanofabrication, epitaxial growth, and detailed characterization, this work reveals an evolution in the growth mode of InGaN epitaxial shells, from a two-dimensional (2D) growth mode to three-dimensional (3D) striated growth without additional line defect formation with increasing layer thickness. Measurements of the indium distribution show fluctuations along the <10–10> directions, with low and high indium composition associated with the 2D and 3D growth modes, respectively. Atomic steps at the GaN/InGaN core–shell interface were observed to occur with a similar frequency as quasi-periodic indium fluctuations along [0001] observed within the 2D layer, to provide evidence that the resulting local strain relief at the steps acts as the trigger for a change of growth mode by elastic relaxation. This study demonstrates that misfit dislocation generation during the growth of wider InGaN shell layers can be avoided by using pre-etched GaN nanorods. Significantly, this enables the growth of absorption-based devices and light-emitting diodes with emissive layers wide enough to mitigate efficiency droop.