Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Fielitz, Thomas R.

  • Google
  • 3
  • 10
  • 100

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2020Solid-state properties and spectroscopic analysis of thin-film TPBI10citations
  • 2019Formation of aligned periodic patterns during the crystallization of organic semiconductor thin films54citations
  • 2016Crystal Morphology and Growth in Annealed Rubrene Thin Films36citations

Places of action

Chart of shared publication
Ciszek, Jacob W.
1 / 1 shared
Piñero-Cruz, Dalice M.
1 / 1 shared
Florián, Jan
1 / 1 shared
Li, Feifei
1 / 1 shared
Calimano, Jazmin
1 / 1 shared
Shi, Kaicheng
1 / 2 shared
Sambeek, Jack R. Van
1 / 1 shared
Bangsund, John S.
1 / 2 shared
Clark, Catherine P.
1 / 3 shared
Steiner, Trevor J.
1 / 1 shared
Chart of publication period
2020
2019
2016

Co-Authors (by relevance)

  • Ciszek, Jacob W.
  • Piñero-Cruz, Dalice M.
  • Florián, Jan
  • Li, Feifei
  • Calimano, Jazmin
  • Shi, Kaicheng
  • Sambeek, Jack R. Van
  • Bangsund, John S.
  • Clark, Catherine P.
  • Steiner, Trevor J.
OrganizationsLocationPeople

article

Crystal Morphology and Growth in Annealed Rubrene Thin Films

  • Fielitz, Thomas R.
Abstract

<p>While controlled crystallization of organic thin films holds great potential for enhancing the performance of electronic devices, quantitative understanding of the processes involved is limited. Here, we characterize the thin film crystal growth of the organic semiconductor rubrene during annealing using polarized optical microscopy with a heated stage for in situ measurements, followed by atomic force microscopy and X-ray diffraction. During annealing, the film undergoes transitions from predominant growth of a polycrystalline triclinic crystal structure to single crystal orthorhombic, followed by polycrystalline growth of the orthorhombic polymorph. Observation of crystal morphology with time allows determination of the crystal orientation, which is used in conjunction with crystal size measurements to determine the crystallization activation energies for the observed growth phases and crystal planes.</p>

Topics
  • impedance spectroscopy
  • single crystal
  • phase
  • x-ray diffraction
  • thin film
  • atomic force microscopy
  • semiconductor
  • annealing
  • activation
  • optical microscopy
  • crystallization