Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Borg, Mattias

  • Google
  • 15
  • 57
  • 449

Lund University

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (15/15 displayed)

  • 2024Ferroelectricity in Ultrathin HfO2-Based Films by Nanosecond Laser Annealing1citations
  • 2023Three-Dimensional Integration of InAs Nanowires by Template-Assisted Selective Epitaxy on Tungsten4citations
  • 2022Fabrication of Single-Crystalline InSb-on-Insulator by Rapid Melt Growth3citations
  • 2022Template-Assisted Selective Epitaxy of InAs on Wcitations
  • 2021Tuning oxygen vacancies and resistive switching properties in ultra-thin HfO 2 RRAM via TiN bottom electrode and interface engineering83citations
  • 2021Tuning oxygen vacancies and resistive switching properties in ultra-thin HfO2 RRAM via TiN bottom electrode and interface engineering83citations
  • 2021Improved quality of InSb-on-insulator microstructures by flash annealing into melt7citations
  • 2019Integration of InSb on Si by Rapid Melt Growthcitations
  • 2017High-mobility GaSb nanostructures cointegrated with InAs on Si63citations
  • 2017Observation of twin-free GaAs nanowire growth using template-assisted selective epitaxy30citations
  • 2016Length Distributions of Nanowires Growing by Surface Diffusion45citations
  • 2013Geometric model for metalorganic vapour phase epitaxy of dense nanowire arrays26citations
  • 2012High-Frequency Performance of Self-Aligned Gate-Last Surface Channel In0.53Ga0.47As MOSFET66citations
  • 2011High Transconductance Self-Aligned Gate-Last Surface Channel In0.53Ga0.47As MOSFETcitations
  • 2011Formation of the axial heterojunction in GaSb/InAs(Sb) nanowires with high crystal quality38citations

Places of action

Chart of shared publication
Wallentin, Jesper
1 / 22 shared
Irish, Austin
1 / 6 shared
Athle, Robin
3 / 4 shared
Kristensson, Elias
1 / 1 shared
Hill, Megan O.
1 / 2 shared
Timm, Rainer
3 / 28 shared
Chen, Huaiyu
1 / 5 shared
Olausson, Patrik
2 / 3 shared
Lind, Erik
4 / 23 shared
Menon, Heera
5 / 5 shared
Svensson, Johannes
3 / 9 shared
Lehmann, Sebastian
1 / 28 shared
Steer, Matthew
3 / 4 shared
Hetherington, Crispin
1 / 7 shared
Anna, Fontcuberta I. Morral
1 / 18 shared
Thayne, Iain
3 / 7 shared
Morgan, Nicholas Paul
1 / 1 shared
Dacunto, Giulio
1 / 11 shared
Liu, Yi
2 / 19 shared
Wernersson, Lars Erik
1 / 7 shared
Mikkelsen, Anders
2 / 44 shared
Saketh Ram, Mamidala
1 / 1 shared
Li, Zheshen
2 / 24 shared
Persson, Karl Magnus
1 / 1 shared
Yong, Zhihua
2 / 4 shared
Pan, Jisheng
2 / 2 shared
Benter, Sandra
2 / 7 shared
Wernersson, Lars-Erik
5 / 18 shared
Persson, Karl-Magnus
2 / 3 shared
Mamidala, Saketh, Ram
1 / 1 shared
Giulio, D. Acunto
1 / 1 shared
Södergren, Lasse
1 / 1 shared
Johansson, Jonas
3 / 21 shared
Rossell, Marta D.
2 / 51 shared
Wirths, Stephan
2 / 5 shared
Gooth, Johannes
1 / 4 shared
Knoedler, Moritz
2 / 2 shared
Riel, Heike
2 / 4 shared
Cutaia, Davide
1 / 2 shared
Schmid, Heinz
2 / 8 shared
Bologna, Nicolas
2 / 4 shared
Moselund, Kirsten E.
2 / 3 shared
Dubrovskii, Vladimir G.
1 / 8 shared
Berdnikov, Yury
1 / 1 shared
Deppert, Knut
2 / 41 shared
Schmidtbauer, Jan
1 / 2 shared
Storm, Kristian
2 / 3 shared
Egard, Mikael
2 / 2 shared
Fhager, Lars
2 / 2 shared
Ärlelid, Mats
1 / 1 shared
Lenrick, Filip
2 / 37 shared
Wallenberg, Reine
2 / 34 shared
Ek, Martin
1 / 13 shared
Dey, Anil
1 / 2 shared
Thelander, Claes
1 / 10 shared
Dick Thelander, Kimberly
1 / 14 shared
Ganjipour, Bahram
1 / 2 shared
Chart of publication period
2024
2023
2022
2021
2019
2017
2016
2013
2012
2011

Co-Authors (by relevance)

  • Wallentin, Jesper
  • Irish, Austin
  • Athle, Robin
  • Kristensson, Elias
  • Hill, Megan O.
  • Timm, Rainer
  • Chen, Huaiyu
  • Olausson, Patrik
  • Lind, Erik
  • Menon, Heera
  • Svensson, Johannes
  • Lehmann, Sebastian
  • Steer, Matthew
  • Hetherington, Crispin
  • Anna, Fontcuberta I. Morral
  • Thayne, Iain
  • Morgan, Nicholas Paul
  • Dacunto, Giulio
  • Liu, Yi
  • Wernersson, Lars Erik
  • Mikkelsen, Anders
  • Saketh Ram, Mamidala
  • Li, Zheshen
  • Persson, Karl Magnus
  • Yong, Zhihua
  • Pan, Jisheng
  • Benter, Sandra
  • Wernersson, Lars-Erik
  • Persson, Karl-Magnus
  • Mamidala, Saketh, Ram
  • Giulio, D. Acunto
  • Södergren, Lasse
  • Johansson, Jonas
  • Rossell, Marta D.
  • Wirths, Stephan
  • Gooth, Johannes
  • Knoedler, Moritz
  • Riel, Heike
  • Cutaia, Davide
  • Schmid, Heinz
  • Bologna, Nicolas
  • Moselund, Kirsten E.
  • Dubrovskii, Vladimir G.
  • Berdnikov, Yury
  • Deppert, Knut
  • Schmidtbauer, Jan
  • Storm, Kristian
  • Egard, Mikael
  • Fhager, Lars
  • Ärlelid, Mats
  • Lenrick, Filip
  • Wallenberg, Reine
  • Ek, Martin
  • Dey, Anil
  • Thelander, Claes
  • Dick Thelander, Kimberly
  • Ganjipour, Bahram
OrganizationsLocationPeople

article

Length Distributions of Nanowires Growing by Surface Diffusion

  • Dubrovskii, Vladimir G.
  • Berdnikov, Yury
  • Deppert, Knut
  • Johansson, Jonas
  • Borg, Mattias
  • Schmidtbauer, Jan
  • Storm, Kristian
Abstract

<p>We present experimental data on the time and radius-dependent length distributions of Au-catalyzed InAs nanowires grown by metal organic vapor phase epitaxy. We show that these distributions are not as sharp as commonly believed. Rather, they appear to be much broader than Poissonian from the very beginning and spread quickly as the nanowires grow. We develop a model that attributes the observed broadening to the diffusion-induced character of growth. In the initial growth stage, the nanowires are fed from their entire length, leading to a Polya-like length distribution whose standard deviation is proportional to the mean length. After the nanowire length exceeds the adatom diffusion length, the growth acquires a Poissonian character in which the standard deviation scales as a square root of the mean length. We explain why wider nanowires have smaller length dispersion and speculate on the length distributions in Au-catalyzed versus self-catalyzed growth methods.</p>

Topics
  • impedance spectroscopy
  • dispersion
  • surface
  • phase