Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Gładysiak, Andrzej

  • Google
  • 1
  • 7
  • 41

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2015Compressed Arsenolite As4O6 and Its Helium Clathrate As4O6·2He41citations

Places of action

Chart of shared publication
Katrusiak, Andrzej
1 / 30 shared
Dziubek, Kamil F.
1 / 2 shared
Piechota, Jacek
1 / 1 shared
Hanfland, Michael
1 / 32 shared
Zachara, Janusz
1 / 6 shared
Guńka, Piotr A.
1 / 2 shared
Dranka, Maciej
1 / 7 shared
Chart of publication period
2015

Co-Authors (by relevance)

  • Katrusiak, Andrzej
  • Dziubek, Kamil F.
  • Piechota, Jacek
  • Hanfland, Michael
  • Zachara, Janusz
  • Guńka, Piotr A.
  • Dranka, Maciej
OrganizationsLocationPeople

article

Compressed Arsenolite As4O6 and Its Helium Clathrate As4O6·2He

  • Katrusiak, Andrzej
  • Dziubek, Kamil F.
  • Piechota, Jacek
  • Gładysiak, Andrzej
  • Hanfland, Michael
  • Zachara, Janusz
  • Guńka, Piotr A.
  • Dranka, Maciej
Abstract

The crystal structure of arsenolite, the cubic polymorph of molecular arsenic(III) oxide, has been determined by single-crystal X-ray diffraction up to 30 GPa. The bulk of the crystal is monotonically compressed with no detectable anomalies to 60% of the initial volume at 30 GPa. The experimental As4O6 crystal compression exceeds that obtained by various theoretical models within the density functional theory framework. The As4O6 molecules are deformed toward a more tetrahedral shape. A surprising property of arsenolite immersed in helium has been revealed above 3 GPa; the As4O6·2He clathrate is formed in the surface layer increasingly deeper with pressure. Interestingly, this is the first example of helium clathrate formed in situ with a solid molecular oxide and proof that helium may permeate even nonporous single crystals in high-pressure diffraction studies. This indicates it is an important and general phenomenon that needs to be taken into account when conducting high-pressure diffraction studies in helium.

Topics
  • density
  • impedance spectroscopy
  • surface
  • single crystal
  • x-ray diffraction
  • theory
  • density functional theory
  • Arsenic