People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Shields, Philip, A.
University of Bath
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (13/13 displayed)
- 2023Selective Area Growth of GaAs Nanowires and Microplatelet Arrays on Silicon by Hydride Vapor-Phase Epitaxycitations
- 2023Importance of As and Ga Balance in Achieving Long GaAs Nanowires by Selective Area Epitaxycitations
- 2022Etching of the SiGaxN yPassivation Layer for Full Emissive Lateral Facet Coverage in InGaN/GaN Core-Shell Nanowires by MOVPEcitations
- 2021Employing Cathodoluminescence for Nanothermometry and Thermal Transport Measurements in Semiconductor Nanowirescitations
- 2021Point Defects in InGaN/GaN Core-Shell Nanorodscitations
- 2020Structural and luminescence imaging and characterisation of semiconductors in the scanning electron microscopecitations
- 2020Influence of the reactor environment on the selective area thermal etching of GaN nanohole arrayscitations
- 2017Evolution of the m-plane Quantum Well Morphology and Composition within a GaN/InGaN Core-Shell Structurecitations
- 2013Coalescence-induced planar defects in GaN layers grown on ordered arrays of nanorods by metal–organic vapour phase epitaxycitations
- 2012Growth of crack-free GaN epitaxial thin films on composite Si(111)/polycrystalline diamond substrates by MOVPEcitations
- 2011Advances in nano-enabled GaN photonic devices
- 2009Enhanced light extraction by photonic quasi-crystals in GaN blue LEDscitations
- 2007Pulsed epitaxial lateral overgrowth of GaN by metalorganic vapour phase epitaxy
Places of action
Organizations | Location | People |
---|
article
Importance of As and Ga Balance in Achieving Long GaAs Nanowires by Selective Area Epitaxy
Abstract
We report on the selective area growth (SAG) of GaAs nanowires (NWs) by the catalyst-free vapor-solid mechanism. Well-ordered GaAs NWs were grown on GaAs(111)B substrates patterned with a dielectric mask using hydride vapor phase epitaxy (HVPE). GaAs NWs were grown along the ⟨111⟩B direction with perfect hexagonal shape when the hole’s opening diameter in SiN x or SiO x mask was varied from 80 to 340 nm. The impact of growth conditions and the hole size on the NW lengths and growth rates was investigated. A saturation of the NW lengths was observed at high partial pressures of As 4 , explained by the presence of As trimers on the (111)B surface at the NW top surface. By decreasing As 4 partial pressure and decreasing the hole size, high aspect ratio NWs were obtained. The longest and thinnest NWs grew faster than a two-dimensional layer under the same conditions, which strongly suggests that surface diffusion of Ga adatoms from the NW sidewalls to their top contributes to the resulting axial growth rate. These findings were supported by a dedicated model. The study highlights the capability of the HVPE process to grow high aspect ratio GaAs NW arrays with high selectivity.