People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Eklund, Kim
Aalto University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (4/4 displayed)
- 2024Chemical Bonding and Crystal Structure Schemes in Atomic/Molecular Layer Deposited Fe-Terephthalate Thin Filmscitations
- 2023Elastic Properties of Binary d-Metal Oxides Studied by Hybrid Density Functional Methodscitations
- 2022Bromine Pentafluoride BrF5, the Formation of [BrF6]− Salts, and the Stereochemical (In)activity of the Bromine Lone Pairscitations
- 2021Modelling pyroelectricity with first-principles quantum chemical calculations ; Pyrosähköisyyden mallinnus ab initio -kvanttikemiallisilla laskelmilla
Places of action
Organizations | Location | People |
---|
article
Elastic Properties of Binary d-Metal Oxides Studied by Hybrid Density Functional Methods
Abstract
Funding Information: This research was funded by the Academy of Finland, Grant No. 317273. We thank CSC, the Finnish IT Center for Science for computational resources. Publisher Copyright: © 2023 The Authors. Published by American Chemical Society. ; Detailed understanding of the elastic properties and mechanical durability of ceramic materials is crucial for their utilization in advanced microelectronic or micro-electromechanic devices. We have systematically investigated the elastic properties of 97 binary d-metal oxides using hybrid density functional methods. We report the polycrystalline and single-crystal bulk moduli and the symmetrized elastic constants of the studied oxides and compare the elastic properties with experimental information where available. We discuss the periodic trends of several key structure types, namely, rutile, corundum, and rocksalt, in detail. The calculated bulk moduli and elastic constants of the nonmagnetic and magnetic d-metal oxides are in reasonable overall agreement with experiment, but some materials show relatively large discrepancies between the calculated and experimental bulk moduli. In several cases, such as MnO, CoO, NiO, ReO3, and ZrO2 (tP6), some of the elastic constants calculated for ideal single crystals at 0 K are clearly different from the experimentally determined elastic constants. ; Peer reviewed