People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Lysevych, Mykhaylo
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (13/13 displayed)
- 2023Core-shell GaN/AlGaN nanowires grown by selective area epitaxycitations
- 2022Nonpolar Al xGa1−xN/Al yGa1−yN multiple quantum wells on GaN nanowire for UV emissioncitations
- 2022Far-Field Polarization Engineering from Nonlinear Nanoresonatorscitations
- 2022Selective Area Growth of GaN Nanowirecitations
- 2021Narrow-Bandgap InGaAsP Solar Cell with TiO2 Carrier-Selective Contactcitations
- 2020Forward and Backward Switching of Nonlinear Unidirectional Emission from GaAs Nanoantennascitations
- 2019Second-harmonic generation in (111) gallium arsenide nanoantennas
- 2019 Ultrathin Ta 2 O 5 electron-selective contacts for high efficiency InP solar cells citations
- 2019InGaAsP as a Promising Narrow Band Gap Semiconductor for Photoelectrochemical Water Splittingcitations
- 2019Ultrathin Ta2O5 electron-selective contacts for high efficiency InP solar cellscitations
- 2018Indium phosphide based solar cell using ultra-thin ZnO as an electron selective layercitations
- 2017Improved photoelectrochemical performance of GaN nanopillar photoanodescitations
- 2017Void evolution and porosity under arsenic ion irradiation in GaAs1-xSbx alloyscitations
Places of action
Organizations | Location | People |
---|
article
Selective Area Growth of GaN Nanowire
Abstract
<p>Selective area growth of Ga-polar GaN nanowires by metal organic chemical vapor deposition provides a path to achieve arrays of uniform nanowires with controllable dimensions. A systematic investigation on the growth parameters of GaN nanowires demonstrates that although a low V/III ratio and low precursor flows are necessary, V/III ratio is not a sufficient parameter to determine the morphology of GaN nanowires. Partial pressures of the constituent gases, on the other hand, can be used as a single parameter, at a particular growth temperature, to explain the resulting morphology. By correlating the partial pressures of precursors and H2 in the carrier gas with the morphology of the nanowires, we can then determine the flow rates for precursors and hence the range of V/III ratios required for achieving the growth of GaN nanowires.</p>