People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Linder, Markus B.
Aalto University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2024Molecular Engineering of a Spider Silk and Mussel Foot Hybrid Protein Gives a Strong and Tough Biomimetic Adhesivecitations
- 2023Pulling and analyzing silk fibers from aqueous solution using a robotic devicecitations
- 2023Pulling and analyzing silk fibers from aqueous solution using a robotic devicecitations
- 2022Recombinant Spider Silk Protein and Delignified Wood Form a Strong Adhesive Systemcitations
- 2022Recombinant Spider Silk Protein and Delignified Wood Form a Strong Adhesive Systemcitations
- 2020Three-Dimensional Printed Cell Culture Model Based on Spherical Colloidal Lignin Particles and Cellulose Nanofibril-Alginate Hydrogelcitations
- 2020Methyl cellulose/cellulose nanocrystal nanocomposite fibers with high ductilitycitations
- 2019Binding Forces of Cellulose Binding Modules on Cellulosic Nanomaterialscitations
- 2018Modification of carbon nanotubes by amphiphilic glycosylated proteinscitations
- 2018Self-Coacervation of a Silk-Like Protein and Its Use As an Adhesive for Cellulosic Materialscitations
- 2015Modular Architecture of Protein Binding Units for Designing Properties of Cellulose Nanomaterialscitations
- 2015Enhanced plastic deformations of nanofibrillated cellulose film by adsorbed moisture and protein-mediated interactionscitations
- 2014Structural characterization and tribological evaluation of quince seed mucilagecitations
- 2013The role of hemicellulose in nanofibrillated cellulose networkscitations
- 2013Drug release from nanoparticles embedded in four different nanofibrillar cellulose aerogelscitations
- 2012Adhesion and tribological properties of hydrophobin proteins in aqueous lubrication on stainless steel surfacescitations
Places of action
Organizations | Location | People |
---|
article
Three-Dimensional Printed Cell Culture Model Based on Spherical Colloidal Lignin Particles and Cellulose Nanofibril-Alginate Hydrogel
Abstract
<p>Three-dimensional (3D) printing has been an emerging technique to fabricate precise scaffolds for biomedical applications. Cellulose nanofibril (CNF) hydrogels have attracted considerable attention as a material for 3D printing because of their shear-thinning properties. Combining cellulose nanofibril hydrogels with alginate is an effective method to enable cross-linking of the printed scaffolds in the presence of Ca2+ ions. In this work, spherical colloidal lignin particles (CLPs, also known as spherical lignin nanoparticles) were used to prepare CNF-alginate-CLP nanocomposite scaffolds. High-resolution images obtained by atomic force microscopy (AFM) showed that CLPs were homogeneously mixed with the CNF hydrogel. CLPs brought antioxidant properties to the CNF-alginate-CLP scaffolds in a concentration-dependent manner and increased the viscosity of the hydrogels at a low shear rate, which correspondingly provide better shape fidelity and printing resolution to the scaffolds. Interestingly, the CLPs did not affect the viscosity at high shear rates, showing that the shear thinning behavior typical for CNF hydrogels was retained, enabling easy printing. The CNF-alginate-CLP scaffolds demonstrated shape stability after printing, cross-linking, and storage in Dulbecco's phosphate buffer solution (DPBS +) containing Ca2+ and Mg2+ ions, up to 7 days. The 3D-printed scaffolds showed relative rehydration ratio values above 80% after freeze-drying, demonstrating a high water-retaining capability. Cell viability tests using hepatocellular carcinoma cell line HepG2 showed no negative effect of CLPs on cell proliferation. Fluorescence microscopy indicated that HepG2 cells grew not only on the surfaces but also inside the porous scaffolds. Overall, our results demonstrate that nanocomposite CNF-alginate-CLP scaffolds have high potential in soft-tissue engineering and regenerative-medicine applications.</p>