People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kontturi, Eero
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (28/28 displayed)
- 2025Mechanoenzymatic hydrolysis of cotton to cellulose nanocrystals
- 2024Interfacial Engineering of Soft Matter Substrates by Solid-State Polymer Adsorption
- 2024Assessment of the Alga Cladophora glomerata as a Source for Cellulose Nanocrystalscitations
- 2024Wood flour and Kraft lignin enable air-drying of the nanocellulose-based 3D-printed structurescitations
- 2023Thermodynamically controlled multiphase separation of heterogeneous liquid crystal colloidscitations
- 2023Thermodynamically controlled multiphase separation of heterogeneous liquid crystal colloidscitations
- 2022Effect of Moisture on Polymer Deconstruction in HCl Gas Hydrolysis of Woodcitations
- 2022Solid-state polymer adsorption for surface modification: The role of molecular weightcitations
- 2021Visualizing Degradation of Cellulose Nanofibers by Acid Hydrolysiscitations
- 2021Visualizing Degradation of Cellulose Nanofibers by Acid Hydrolysiscitations
- 2021From micro to nano : polypropylene composites reinforced with TEMPO-oxidised cellulose of different fibre widthscitations
- 2021Grow it yourself composites: delignification and hybridisation of lignocellulosic material using animals and fungicitations
- 2020Nanomaterials Derived from Fungal Sources-Is It the New Hype?citations
- 2020Plastic to elastic: Fungi-derived composite nanopapers with tunable tensile propertiescitations
- 2020Plastic to elastic : Fungi-derived composite nanopapers with tunable tensile propertiescitations
- 2019Cellulose carbamate derived cellulose thin films: preparation, characterization and blending with cellulose xanthatecitations
- 2019Sustainable High Yield Route to Cellulose Nanocrystals from Bacterial Cellulosecitations
- 2019Sustainable High Yield Route to Cellulose Nanocrystals from Bacterial Cellulosecitations
- 2019Nanomaterials Derived from Fungal Sources - Is It the New Hype?citations
- 2018Structural distinction due to deposition method in ultrathin films of cellulose nanofibrescitations
- 2018Time-Dependent Behavior of Cation Transport through Cellulose Acetate-Cationic Polyelectrolyte Membranescitations
- 2017Strongly reduced thermal conductivity in hybrid ZnO/nanocellulose thin filmscitations
- 2016Parameters affecting monolayer organisation of substituted polysaccharides on solid substrates upon Langmuir-Schaefer depositioncitations
- 2015Chemical characteristics of squeezable sap of hydrothermally treated silver birch logs (Betula pendula)citations
- 2015The Effect of Hydrothermal Treatment on the Color Stability and Chemical Properties of Birch Veneer Surfacescitations
- 2015Chemical characteristics of squeezable sap of hydrothermally treated silver birch logs (Betula pendula):Effect of treatment time and the quality of the soaking water in pilot scale experimentcitations
- 2011Polyelectrolyte Brushes Grafted from Cellulose Nanocrystals Using Cu-Mediated Surface-Initiated Controlled Radical Polymerization.citations
- 2011The effect of hydrothermal pre-treatment on the chemical characteristics of the xylem of silver birch
Places of action
Organizations | Location | People |
---|
article
Nanomaterials Derived from Fungal Sources-Is It the New Hype?
Abstract
Greener alternatives to synthetic polymers are constantly being investigated and sought after. Chitin is a natural polysaccharide that gives structural support to crustacean shells, insect exoskeletons, and fungal cell walls. Like cellulose, chitin resides in nanosized structural elements that can be isolated as nanofibers and nanocrystals by various top-down approaches, targeted at disintegrating the native construct. Chitin has, however, been largely overshadowed by cellulose when discussing the materials aspects of the nanosized components. This Perspective presents a thorough overview of chitin-related materials research with an analytical focus on nanocomposites and nanopapers. The red line running through the text emphasizes the use of fungal chitin that represents several advantages over the more popular crustacean sources, particularly in terms of nanofiber isolation from the native matrix. In addition, many β-glucans are preserved in chitin upon its isolation from the fungal matrix, enabling new horizons for various engineering solutions. ; Peer reviewed