Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Pizzut-Serin, S.

  • Google
  • 1
  • 6
  • 21

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2018In Vitro Synthesis and Crystallization of β-1,4-Mannan.21citations

Places of action

Chart of shared publication
Jl, Putaux
1 / 1 shared
Potocki-Veronese, G.
1 / 1 shared
Tarquis, L.
1 / 1 shared
Ladevèze, S.
1 / 1 shared
Grimaud, Florent
1 / 5 shared
Morel, S.
1 / 3 shared
Chart of publication period
2018

Co-Authors (by relevance)

  • Jl, Putaux
  • Potocki-Veronese, G.
  • Tarquis, L.
  • Ladevèze, S.
  • Grimaud, Florent
  • Morel, S.
OrganizationsLocationPeople

article

In Vitro Synthesis and Crystallization of β-1,4-Mannan.

  • Jl, Putaux
  • Potocki-Veronese, G.
  • Pizzut-Serin, S.
  • Tarquis, L.
  • Ladevèze, S.
  • Grimaud, Florent
  • Morel, S.
Abstract

In vitro polymerization of β-mannans is a challenging reaction due to the steric hindrance confered by the configuration of mannosyl residues and the thermodynamic instability of the β-anomer. Whatever the approach used to date-whether chemical, or enzymatic with glycosynthases and mannosyltransferases-pure β-1,4-mannans have never been synthesized in vitro. This has limited attempts to investigate their role in the production of plant and algal cell walls, in which they are highly abundant. It has also impeded the exploitation of their properties as biosourced materials. In this paper, we demonstrate that TM1225, a thermoactive glycoside phosphorylase from the hyperthermophile species Thermotoga maritima, is a powerful biocatalytic tool for the ecofriendly synthesis of pure β-1,4-mannan. The recombinant production of this enzyme and its biochemical characterization allowed us to prove that it catalyzes the reversible phosphorolysis of β-1,4-mannosides, and determine its role in the metabolism of the algal mannans on which T. maritima feeds in submarine sediments. Furthermore, after optimizing the reaction conditions, we exploited the synthetic ability of TM1225 to produce β-1,4-mannan in vitro. At 60 °C and from d-mannose 1-phosphate and mannohexaose, the enzyme synthesized mannoside chains with a degree of polymerization up to 16, which precipitated into lamellar single crystals. The X-ray powder diffraction and base-plane electron diffraction patterns of the lamellar crystals unambiguously show that the synthesized product belongs to the mannan I family previously observed in planta in pure linear mannans, such as those of the ivory nut. The in vitro formation of these mannan I crystals is likely determined by the high reaction temperature and the narrow chain length distribution of the insoluble chains.

Topics
  • impedance spectroscopy
  • single crystal
  • electron diffraction
  • crystallization