People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Farooq, Muhammad
Aalto University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2024Phytoassisted synthesis of CuO and Ag–CuO nanocomposite, characterization, chemical sensing of ammonia, degradation of methylene bluecitations
- 2024Oil mediated polymer based green synthesis of calcium hydroxide nanoparticles and their application in bone conservationcitations
- 2023Experimental optimization of various heat sinks using passive thermal management systemcitations
- 2021Nanomaterials in the Management of Gram-Negative Bacterial Infectionscitations
- 2021Lignocellulosic building blocks for aerogel and nanocomposite applicationscitations
- 2021Toward waste valorization by converting bioethanol production residues into nanoparticles and nanocomposite filmscitations
- 2020Three-Dimensional Printed Cell Culture Model Based on Spherical Colloidal Lignin Particles and Cellulose Nanofibril-Alginate Hydrogelcitations
- 2020Three-Dimensional Printed Cell Culture Model Based on Spherical Colloidal Lignin Particles and Cellulose Nanofibril-Alginate Hydrogelcitations
- 2019Strong, Ductile, and Waterproof Cellulose Nanofibril Composite Films with Colloidal Lignin Particlescitations
- 2015Carbon-based nanofillers/poly(butylene terephthalate): thermal, dielectric, electrical and rheological propertiescitations
- 2013Strengthening and degradation mechanisms in austenitic stainless steels at elevated temperature
- 2012Numerical modelling and validation of precipitation kinetics in advanced creep resistant austenitic steel
Places of action
Organizations | Location | People |
---|
article
Strong, Ductile, and Waterproof Cellulose Nanofibril Composite Films with Colloidal Lignin Particles
Abstract
| openaire: EC/H2020/720303/EU//ZELCOR ; Brittleness has hindered commercialization of cellulose nanofibril (CNF) films. The use of synthetic polymers and plasticizers is a known detour that impairs biodegradability and carbon footprint of the product. Herein, we utilize a variety of softwood Kraft lignin morphologies to obtain strong and ductile CNF nanocomposite films. An optimum 10 wt % content of colloidal lignin particles (CLPs) produced films with nearly double the toughness compared to a CNF film without lignin. CLPs rendered the films waterproof, provided antioxidant activity and UV-shielding with better visible light transmittance than obtained with irregular lignin aggregates. We conclude based on electron microscopy, dynamic water sorption analysis, and tp-DSC that homogeneously distributed CLPs act as ball bearing lubricating and stress transferring agents in the CNF matrix. Overall, our results open new avenues for the utilization of lignin nanoparticles in biopolymer composites equipped with versatile functionalities for applications in food packaging, water purification, and biomedicine. ; Peer reviewed