People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Bruns, Nico
Technical University of Darmstadt
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (29/29 displayed)
- 2023Rendering Polyurethane Hydrophilic for Efficient Cellulose Reinforcement in Melt‐Spun Nanocomposite Fiberscitations
- 2023Synthesis of artificial cells via biocatalytic polymerisation-induced self-assembly
- 2023Artificial cell synthesis using biocatalytic polymerization-induced self-assemblycitations
- 2022Donor–acceptor stenhouse adduct-polydimethylsiloxane-conjugates for enhanced photoswitching in bulk polymerscitations
- 2021Nano‐3D‐printed photochromic micro‐objectscitations
- 2021Infiltration of proteins in cholesteric cellulose structurescitations
- 2020Tuning the properties of a UV-polymerized, cross-linked solid polymer electrolyte for lithium batteriescitations
- 2020Tuning the Properties of a UV-Polymerized, Cross-Linked Solid Polymer Electrolyte for Lithium Batteriescitations
- 2018Self-reporting fiber-reinforced composites that mimic the ability of biological materials to sense and report damagecitations
- 2018DNA-coated functional oil dropletscitations
- 2017Visible light-responsive DASA-polymer conjugatescitations
- 2017Visible light-responsive DASA-polymer conjugatescitations
- 2017Controlling enzymatic polymerization from surfaces with switchable bioaffinitycitations
- 2017Structural behavior of cylindrical polystyrene-block-poly(ethylene-butylene)-block-polystyrene (SEBS) triblock copolymer containing MWCNTscitations
- 2016Protein cages and synthetic polymerscitations
- 2014Mechanical unfolding of a fluorescent protein enables self-reporting of damage in carbon-fibre-reinforced compositescitations
- 2014Mechanical unfolding of a fluorescent protein enables self-reporting of damage in carbon-fibre-reinforced compositescitations
- 2014A chaperonin as protein nanoreactor for atom-transfer radical polymerizationcitations
- 2014Polymeric particulates for subunit vaccine deliverycitations
- 2013Combining polymers with the functionality of proteinscitations
- 2013Combining Polymers with the Functionality of Proteins: New Concepts for Atom Transfer Radical Polymerization, Nanoreactors and Damage Self-reporting Materialscitations
- 2013Hemoglobin and red blood cells catalyze atom transfer radical polymerizationcitations
- 2012ATRPasescitations
- 2012Use of a novel initiator for synthesis of amino-end functionalized polystyrene (NH 2-PS) by atom transfer radical polymerizationcitations
- 2011Selective and responsive nanoreactorscitations
- 2011Horseradish peroxidase as a catalyst for atom transfer radical polymerizationcitations
- 2011Phase behavior of vesicle-forming block copolymers in aqueous solutionscitations
- 2011Self-reporting materialscitations
- 2006Optical biochemical sensor for determining hydroperoxides in nonpolar organic liquids as archetype for sensors consisting of amphiphilic conetworks as immobilisation matricescitations
Places of action
Organizations | Location | People |
---|
article
Controlling enzymatic polymerization from surfaces with switchable bioaffinity
Abstract
The affinity of surfaces toward proteins is found to be a key parameter to govern the synthesis of polymer brushes by surface-initiated biocatalytic atom transfer radical polymerization (SI-bioATRP). While the “ATRPase” hemoglobin (Hb) stimulates only a relatively slow growth of protein repellent brushes, the synthesis of thermoresponsive grafts can be regulated by switching the polymer’s attraction toward proteins across its lower critical solution temperature (LCST). Poly(N-isopropylacrylamide) (PNIPAM) brushes are synthesized in discrete steps of thickness at temperatures above LCST, while the biocatalyst layer is refreshed at T < LCST. Multistep surface-initiated biocatalytic ATRP demonstrates a high degree of control, results in high chain end group fidelity and enables the synthesis of multiblock copolymer brushes under fully aqueous conditions. The activity of Hb can be further modulated by tuning the accessibility of the heme pocket within the protein. Hence, the multistep polymerization is accelerated at acid pH, where the enzyme undergoes a transition from its native to a molten globule conformation. The controlled synthesis of polymer brushes by multistep SI-bioATRP highlights how a biocatalytic synthesis of grafted polymer films can be precisely controlled through the modulation of the polymer’s interfacial physicochemical properties, in particular of the affinity of the surface toward proteins. This is not only of importance to gain a predictive understanding of surface-confined enzymatic polymerizations, but also represents a new way to translate bioadhesion into a controlled functionalization of materials.