People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Spirk, Stefan
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (21/21 displayed)
- 2024Fusion of cellulose microspheres with pulp fibers: Creating an unconventional type of papercitations
- 2023Visualizing cellulose chains with cryo scanning transmission electron microscopy
- 2022Silica-based fibers with axially aligned mesopores from chitin self-assembly and sol-gel chemistrycitations
- 2022Xylan-cellulose thin film platform for assessing xylanase activitycitations
- 2021How cellulose nanofibrils and cellulose microparticles impact paper strength—A visualization approachcitations
- 2021Visualizing Degradation of Cellulose Nanofibers by Acid Hydrolysiscitations
- 2021Visualizing Degradation of Cellulose Nanofibers by Acid Hydrolysiscitations
- 2020Cellulose metal sulfide based nanocomposite thin films
- 2019Cellulose carbamate derived cellulose thin films: preparation, characterization and blending with cellulose xanthatecitations
- 2019Cobalt Ferrite Nanoparticles for Three-Dimensional Visualization of Micro- and Nanostructured Cellulose in Papercitations
- 2019Design of Friction, Morphology, Wetting, and Protein Affinity by Cellulose Blend Thin Film Compositioncitations
- 2019Multi-layered nanoscale cellulose/CuInS2 sandwich type thin filmscitations
- 2019Three Dimensional Localization and Visualization of Paper Fines in Sheets
- 2018Thin Films from Acetylated Lignin
- 2017Interaction of tissue engineering substrates with serum proteins and its influence on human primary endothelial cellscitations
- 2017How Bound and Free Fatty Acids in Cellulose Films Impact Nonspecific Protein Adsorptioncitations
- 2016Enzymes as Biodevelopers for Nano- And Micropatterned Bicomponent Biopolymer Thin Films.citations
- 2016Topography effects in AFM force mapping experiments on xylan-decorated cellulose thin films.citations
- 2014Photoregeneration of Trimethylsilyl Cellulose as a Tool for Microstructuring Ultrathin Cellulose Supportscitations
- 2013Functional patterning of biopolymer thin films using enzymes and lithographic methodscitations
- 2013Chitosan-Silane Sol-Gel Hybrid Thin Films with controllable Layer Thickness and Morphologycitations
Places of action
Organizations | Location | People |
---|
article
How Bound and Free Fatty Acids in Cellulose Films Impact Nonspecific Protein Adsorption
Abstract
The effect of fatty acids and fatty acid esters to impair nonspecific protein adsorption on cellulose thin films is investigated. Thin films are prepared by blending trimethylsilyl cellulose solutions with either cellulose stearoyl ester or stearic acid at various ratios. After film formation by spin coating, the trimethylsilyl cellulose fraction of the films is converted to cellulose by exposure to HCl vapors. The morphologies and surface roughness of the blends were examined by atomic force microscopy revealing different feature shapes and sizes depending on the blend ratios. Nonspecific protein adsorption at the example of bovine serum albumin toward the blend thin films was tested by means of surface plasmon resonance spectroscopy in real-time. Incorporation of stearic acid into the cellulose leads to highly protein repellent surfaces regardless of the amount added. The stearic acid acts as a sacrificial compound that builds a complex with bovine serum albumin thereby inhibiting protein adsorption. For the blends where stearoyl ester is added to the cellulose films, the cellulose:cellulose stearoyl ester ratios of 3:1 and 1:1 lead to much lower nonspecific protein adsorption compared to pure cellulose, whereas for the other ratios, adsorption increases. Supplementary results were obtained from atomic force microscopy experiments performed in liquid during exposure to protein solution and surface free energy determinations.