People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Spirk, Stefan
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (21/21 displayed)
- 2024Fusion of cellulose microspheres with pulp fibers: Creating an unconventional type of papercitations
- 2023Visualizing cellulose chains with cryo scanning transmission electron microscopy
- 2022Silica-based fibers with axially aligned mesopores from chitin self-assembly and sol-gel chemistrycitations
- 2022Xylan-cellulose thin film platform for assessing xylanase activitycitations
- 2021How cellulose nanofibrils and cellulose microparticles impact paper strength—A visualization approachcitations
- 2021Visualizing Degradation of Cellulose Nanofibers by Acid Hydrolysiscitations
- 2021Visualizing Degradation of Cellulose Nanofibers by Acid Hydrolysiscitations
- 2020Cellulose metal sulfide based nanocomposite thin films
- 2019Cellulose carbamate derived cellulose thin films: preparation, characterization and blending with cellulose xanthatecitations
- 2019Cobalt Ferrite Nanoparticles for Three-Dimensional Visualization of Micro- and Nanostructured Cellulose in Papercitations
- 2019Design of Friction, Morphology, Wetting, and Protein Affinity by Cellulose Blend Thin Film Compositioncitations
- 2019Multi-layered nanoscale cellulose/CuInS2 sandwich type thin filmscitations
- 2019Three Dimensional Localization and Visualization of Paper Fines in Sheets
- 2018Thin Films from Acetylated Lignin
- 2017Interaction of tissue engineering substrates with serum proteins and its influence on human primary endothelial cellscitations
- 2017How Bound and Free Fatty Acids in Cellulose Films Impact Nonspecific Protein Adsorptioncitations
- 2016Enzymes as Biodevelopers for Nano- And Micropatterned Bicomponent Biopolymer Thin Films.citations
- 2016Topography effects in AFM force mapping experiments on xylan-decorated cellulose thin films.citations
- 2014Photoregeneration of Trimethylsilyl Cellulose as a Tool for Microstructuring Ultrathin Cellulose Supportscitations
- 2013Functional patterning of biopolymer thin films using enzymes and lithographic methodscitations
- 2013Chitosan-Silane Sol-Gel Hybrid Thin Films with controllable Layer Thickness and Morphologycitations
Places of action
Organizations | Location | People |
---|
article
Interaction of tissue engineering substrates with serum proteins and its influence on human primary endothelial cells
Abstract
Polymer-based biomaterials particularly polycaprolactone (PCL) are one of the most promising substrates for tissue engineering. The surface chemistry of these materials plays a major role since it governs protein adsorption, cell adhesion, viability, degradation, and biocompatibility in the first place. This study correlates the interaction of the most abundant serum proteins (albumin, immunoglobulins, fibrinogen) with the surface properties of PCL and its influence on the morphology and metabolic activity of primary human arterial endothelial cells that are seeded on the materials. Prior to that, thin films of PCL are manufactured by spin-coating and characterized in detail. A quartz crystal microbalance with dissipation (QCM-D), a multiparameter surface plasmon resonance spectroscopy instrument (MP-SPR), wettability data, and atomic force microscopy are combined to elucidate the pH-dependent protein adsorption on the PCL substrates. Primary endothelial cells are cultured on the protein modified polymer, and conclusions are drawn on the significant impact of type and form of proteins coatings on cell morphology and metabolic activity.