People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Prof
Graz University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2024Films based on TEMPO-oxidized chitosan nanoparticles
- 20233D-Printed Anisotropic Nanofiber Composites with Gradual Mechanical Propertiescitations
- 2022Organic acid cross-linked 3D printed cellulose nanocomposite bioscaffolds with controlled porosity, mechanical strength, and biocompatibilitycitations
- 2022Solid Phase Peptide Synthesis on Chitosan Thin Filmscitations
- 2021High oxygen barrier chitosan films neutralized by alkaline nanoparticlescitations
- 2021Design, Characterisation and Applications of Cellulose-Based Thin Films, Nanofibers and 3D Printed Structures
- 2020Design of stable and new polysaccharide nanoparticles composite and their interaction with solid cellulose surfacescitations
- 2019Novel Chitosan–Mg(OH)2-Based Nanocomposite Membranes for Direct Alkaline Ethanol Fuel Cellscitations
- 2019Affinity of Serum Albumin and Fibrinogen to Cellulose, Its Hydrophobic Derivatives and Blendscitations
- 2018Modification of cellulose thin films with lysine moietiescitations
- 2017Interaction of tissue engineering substrates with serum proteins and its influence on human primary endothelial cellscitations
- 2015Cellulose thin films from ionic liquid solutions
- 2014Preparation of PDMS ultrathin films and patterned surface modification with cellulosecitations
- 2014A study on the interaction of cationized chitosan with cellulose surfacescitations
- 2013Functional patterning of biopolymer thin films using enzymes and lithographic methodscitations
- 2013Chemical modification and characterization of poly(ethylene terephthalate) surfaces for collagen immobilizationcitations
- 2012Adsorption of carboxymethyl cellulose on polymer surfacescitations
- 2011Wettability and surface composition of partly and fully regenerated cellulose thin films from trimethylsilyl cellulosecitations
Places of action
Organizations | Location | People |
---|
article
Interaction of tissue engineering substrates with serum proteins and its influence on human primary endothelial cells
Abstract
Polymer-based biomaterials particularly polycaprolactone (PCL) are one of the most promising substrates for tissue engineering. The surface chemistry of these materials plays a major role since it governs protein adsorption, cell adhesion, viability, degradation, and biocompatibility in the first place. This study correlates the interaction of the most abundant serum proteins (albumin, immunoglobulins, fibrinogen) with the surface properties of PCL and its influence on the morphology and metabolic activity of primary human arterial endothelial cells that are seeded on the materials. Prior to that, thin films of PCL are manufactured by spin-coating and characterized in detail. A quartz crystal microbalance with dissipation (QCM-D), a multiparameter surface plasmon resonance spectroscopy instrument (MP-SPR), wettability data, and atomic force microscopy are combined to elucidate the pH-dependent protein adsorption on the PCL substrates. Primary endothelial cells are cultured on the protein modified polymer, and conclusions are drawn on the significant impact of type and form of proteins coatings on cell morphology and metabolic activity.