People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Lee, Koon-Yang
Imperial College London
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (23/23 displayed)
- 2023Predicting filling efficiency of composite resin injection repaircitations
- 2021<i>Komagataeibacter</i> Tool Kit (KTK): A Modular Cloning System for Multigene Constructs and Programmed Protein Secretion from Cellulose Producing Bacteria.citations
- 2020Nanomaterials Derived from Fungal Sources-Is It the New Hype?citations
- 2020Upcycling Poultry Feathers with (Nano)cellulose:Sustainable Composites Derived from Nonwoven Whole Feather Preformscitations
- 2020High porosity cellulose nanopapers as reinforcement in multi-layer epoxy laminatescitations
- 2019Nanocellulose reinforced polymer composites: Computational analysis of structure-mechanical properties relationshipscitations
- 2019Cationic starch as strengthening agent in nanofibrillated and bacterial cellulose nanopapers
- 2019Nanomaterials Derived from Fungal Sources - Is It the New Hype?citations
- 2018Better togethercitations
- 2018Thinner and better: (Ultra-)low grammage bacterial cellulose nanopaper-reinforced polylactide composite laminates
- 2017Sample geometry dependency on the measured tensile properties of cellulose nanopaperscitations
- 2016Understanding the Dispersion and Assembly of Bacterial Cellulose in Organic Solventscitations
- 2016Ductile unidirectional continuous rayon fibre-reinforced hierarchical compositescitations
- 2014Bacterial Cellulose Nanopaper as Reinforcement for Polylactide Compositescitations
- 2014Aligned unidirectional PLA/bacterial cellulose nanocomposite fibre reinforced PDLLA compositescitations
- 2014On the use of nanocellulose as reinforcement in polymer matrix compositescitations
- 2013Porous copolymers of ε-caprolactone as scaffolds for tissue engineeringcitations
- 2012Nano-fibrillated cellulose vs bacterial cellulose
- 2012Carbon Fiber: Properties, Testing, and Analysiscitations
- 2012Interfaces in Cross-Linked and Grafted Bacterial Cellulose/Poly(Lactic Acid) Resin Compositescitations
- 2012Nano-fibrillated cellulose vs bacterial cellulose:Reinforcing ability of nanocellulose obtained topdown or bottom-up
- 2009Renewable nanocomposite polymer foams synthesized from Pickering emulsion templatescitations
- 2009Surface functionalisation of bacterial cellulose as the route to produce green polylactide nanocomposites with improved propertiescitations
Places of action
Organizations | Location | People |
---|
article
Understanding the Dispersion and Assembly of Bacterial Cellulose in Organic Solvents
Abstract
<p>The constituent nanofibrils of bacterial cellulose are of interest to many researchers because of their purity and excellent mechanical properties. Mechanisms to disrupt the network structure of bacterial cellulose (BC) to isolate bacterial cellulose nanofibrils (BCN) are limited. This work focuses on liquid-phase dispersions of BCN in a range of organic solvents. It builds on work to disperse similarly intractable nanomaterials, such as single-walled carbon nanotubes, where optimum dispersion is seen for solvents whose surface energies are close to the surface energy of the nanomaterial; bacterial cellulose is shown to disperse in a similar fashion. Inverse gas chromatography was used to determine the surface energy of bacterial cellulose, under relevant conditions, by quantifying the surface heterogeneity of the material as a function of coverage. Films of pure BCN were prepared from dispersions in a range of solvents; the extent of BCN exfoliation is shown to have a strong effect on the mechanical properties of BC films and to fit models based on the volumetric density of nanofibril junctions. Such control offers new routes to producing robust cellulose films of bacterial cellulose nanofibrils.</p>