Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Castilho, Miguel

  • Google
  • 19
  • 79
  • 1076

Eindhoven University of Technology

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (19/19 displayed)

  • 2024Covalent Grafting of Functionalized MEW Fibers to Silk Fibroin Hydrogels to Obtain Reinforced Tissue Engineered Constructs8citations
  • 2024Covalent Grafting of Functionalized MEW Fibers to Silk Fibroin Hydrogels to Obtain Reinforced Tissue Engineered Constructs8citations
  • 20243D Printed Magneto-Active Microfiber Scaffolds for Remote Stimulation and Guided Organization of 3D In Vitro Skeletal Muscle Models17citations
  • 20233D printed magneto-active microfiber scaffolds for remote stimulation of 3D in vitro skeletal muscle models2citations
  • 20233D Printed Magneto‐Active Microfiber Scaffolds for Remote Stimulation and Guided Organization of 3D In Vitro Skeletal Muscle Models17citations
  • 20233D printed and punched porous surfaces of a non-resorbable, biphasic implant for the repair of osteochondral lesions improves repair tissue adherence and ingrowthcitations
  • 2023Multi-leveled Nanosilicate Implants Can Facilitate Near-Perfect Bone Healing14citations
  • 2023Composite Graded Melt Electrowritten Scaffolds for Regeneration of the Periodontal Ligament-to-Bone Interface17citations
  • 2021Combinatorial fluorapatite-based scaffolds substituted with strontium, magnesium and silicon ions for mending bone defects33citations
  • 2020Anisotropic hygro-expansion in hydrogel fibers owing to uniting 3D electrowriting and supramolecular polymer assembly16citations
  • 2020Combining multi-scale 3D printing technologies to engineer reinforced hydrogel-ceramic interfaces119citations
  • 2020Combining multi-scale 3D printing technologies to engineer reinforced hydrogel-ceramic interfaces119citations
  • 2020Long-Term in Vivo Performance of Low-Temperature 3D-Printed Bioceramics in an Equine Model13citations
  • 2020Stable and Antibacterial Magnesium-Graphene Nanocomposite-Based Implants for Bone Repair47citations
  • 2020Stable and Antibacterial Magnesium-Graphene Nanocomposite-Based Implants for Bone Repair47citations
  • 2019Bi-layered micro-fibre reinforced hydrogels for articular cartilage regeneration104citations
  • 2018Out-of-plane 3D-printed microfibers improve the shear properties of hydrogel composites60citations
  • 2018Out-of-Plane 3D-Printed Microfibers Improve the Shear Properties of Hydrogel Composites60citations
  • 2017Assessing bioink shape fidelity to aid material development in 3D bioprinting375citations

Places of action

Chart of shared publication
Ainsworth, Madison J.
2 / 2 shared
Steenbergen, Mies J. Van
1 / 4 shared
Rijen, Mattie Van
1 / 2 shared
Mihajlovic, Marko
2 / 2 shared
Ruijter, Mylène De
2 / 4 shared
Malda, Jos
17 / 39 shared
Viola, Martina
2 / 2 shared
Cedillo-Servin, Gerardo
5 / 5 shared
Vermonden, Tina
5 / 14 shared
Van Steenbergen, Mies J.
1 / 6 shared
De Ruijter, Mylène
3 / 3 shared
Van Rijen, Mattie
1 / 2 shared
Pinto, Artur M.
2 / 2 shared
Geijsen, Niels
3 / 3 shared
Pereira, André
3 / 7 shared
Sage, Fanny
3 / 3 shared
Silva, Joana
3 / 5 shared
Magalhães, Fernão D.
3 / 5 shared
Van Duijn, Joost
3 / 4 shared
Moon, Harrison
2 / 2 shared
Meneses, João
3 / 3 shared
Dahri, Ouafa
3 / 3 shared
Moreira Pinto, Artur
1 / 1 shared
Van Buul, Ward
1 / 1 shared
Plomp, Saskia
2 / 3 shared
Van Weeren, René
1 / 3 shared
Golafshan, Nasim
6 / 6 shared
Hermsen, Gied
1 / 1 shared
Fugazzola, Maria C.
1 / 1 shared
Van Aken, Joris A.
1 / 1 shared
Weinans, Harrie
1 / 12 shared
De Grauw, Janny
1 / 2 shared
Keshavarz, Mozhgan
1 / 1 shared
Orive, Gorka
2 / 5 shared
Alizadeh, Parvin
1 / 8 shared
Dolatshahi-Pirouz, Alireza
3 / 19 shared
Gaharwar, Akhilesh K.
1 / 5 shared
Kadumudi, Firoz Babu
1 / 3 shared
Bottino, Marco C.
1 / 7 shared
Dal-Fabbro, Renan
1 / 1 shared
Alehosseini, Morteza
2 / 2 shared
Ruijter, Mylene De
2 / 2 shared
Bhaduri, Sarit B.
1 / 1 shared
Daghrery, Arwa
1 / 1 shared
Krikonis, Konstantinos
1 / 1 shared
Kemp, Tom Van De
1 / 1 shared
Kharaziha, Mahshid
3 / 9 shared
Talebi, Ardeshir
1 / 1 shared
Ahmadi, Tahmineh
1 / 3 shared
Fathi, Mohammadhossein
1 / 1 shared
Wu, Dan Jing
1 / 3 shared
Lamers, Brigitte A. G.
1 / 8 shared
Dankers, Patricia Y. W.
1 / 12 shared
Hoefnagels, Jpm Johan
1 / 71 shared
Vonk, Niels H.
1 / 4 shared
Gbureck, Uwe
3 / 16 shared
Levato, Riccardo
3 / 13 shared
Diloksumpan, Paweena
2 / 5 shared
Weeren, P. René Van
2 / 5 shared
Van Weeren, P. René
1 / 2 shared
Bolaños, Rafael Vindas
1 / 3 shared
Groll, Jürgen
3 / 9 shared
Cokelaere, Stefan
1 / 3 shared
Grauw, Janny De
1 / 2 shared
Safari, Narges
2 / 2 shared
Utomo, Lizette
2 / 2 shared
Reza Toroghinejad, Mohammad
1 / 1 shared
Toroghinejad, Mohammad Reza
1 / 4 shared
Chen, Mike
1 / 1 shared
Mouser, Vivian
1 / 2 shared
Ito, Keita
1 / 13 shared
Dalton, Paul D.
2 / 9 shared
Hochleitner, Gernot
2 / 4 shared
Hrynevich, Andrei
2 / 3 shared
Haigh, Jodie N.
2 / 3 shared
Hennink, Wim E.
1 / 18 shared
Visser, Claas Willem
1 / 2 shared
Blokzijl, Maarten Michiel
1 / 1 shared
Ribeiro, Alexandre
1 / 1 shared
Chart of publication period
2024
2023
2021
2020
2019
2018
2017

Co-Authors (by relevance)

  • Ainsworth, Madison J.
  • Steenbergen, Mies J. Van
  • Rijen, Mattie Van
  • Mihajlovic, Marko
  • Ruijter, Mylène De
  • Malda, Jos
  • Viola, Martina
  • Cedillo-Servin, Gerardo
  • Vermonden, Tina
  • Van Steenbergen, Mies J.
  • De Ruijter, Mylène
  • Van Rijen, Mattie
  • Pinto, Artur M.
  • Geijsen, Niels
  • Pereira, André
  • Sage, Fanny
  • Silva, Joana
  • Magalhães, Fernão D.
  • Van Duijn, Joost
  • Moon, Harrison
  • Meneses, João
  • Dahri, Ouafa
  • Moreira Pinto, Artur
  • Van Buul, Ward
  • Plomp, Saskia
  • Van Weeren, René
  • Golafshan, Nasim
  • Hermsen, Gied
  • Fugazzola, Maria C.
  • Van Aken, Joris A.
  • Weinans, Harrie
  • De Grauw, Janny
  • Keshavarz, Mozhgan
  • Orive, Gorka
  • Alizadeh, Parvin
  • Dolatshahi-Pirouz, Alireza
  • Gaharwar, Akhilesh K.
  • Kadumudi, Firoz Babu
  • Bottino, Marco C.
  • Dal-Fabbro, Renan
  • Alehosseini, Morteza
  • Ruijter, Mylene De
  • Bhaduri, Sarit B.
  • Daghrery, Arwa
  • Krikonis, Konstantinos
  • Kemp, Tom Van De
  • Kharaziha, Mahshid
  • Talebi, Ardeshir
  • Ahmadi, Tahmineh
  • Fathi, Mohammadhossein
  • Wu, Dan Jing
  • Lamers, Brigitte A. G.
  • Dankers, Patricia Y. W.
  • Hoefnagels, Jpm Johan
  • Vonk, Niels H.
  • Gbureck, Uwe
  • Levato, Riccardo
  • Diloksumpan, Paweena
  • Weeren, P. René Van
  • Van Weeren, P. René
  • Bolaños, Rafael Vindas
  • Groll, Jürgen
  • Cokelaere, Stefan
  • Grauw, Janny De
  • Safari, Narges
  • Utomo, Lizette
  • Reza Toroghinejad, Mohammad
  • Toroghinejad, Mohammad Reza
  • Chen, Mike
  • Mouser, Vivian
  • Ito, Keita
  • Dalton, Paul D.
  • Hochleitner, Gernot
  • Hrynevich, Andrei
  • Haigh, Jodie N.
  • Hennink, Wim E.
  • Visser, Claas Willem
  • Blokzijl, Maarten Michiel
  • Ribeiro, Alexandre
OrganizationsLocationPeople

article

Covalent Grafting of Functionalized MEW Fibers to Silk Fibroin Hydrogels to Obtain Reinforced Tissue Engineered Constructs

  • Ainsworth, Madison J.
  • Steenbergen, Mies J. Van
  • Rijen, Mattie Van
  • Mihajlovic, Marko
  • Ruijter, Mylène De
  • Malda, Jos
  • Viola, Martina
  • Cedillo-Servin, Gerardo
  • Castilho, Miguel
  • Vermonden, Tina
Abstract

<p>Hydrogels are ideal materials to encapsulate cells, making them suitable for applications in tissue engineering and regenerative medicine. However, they generally do not possess adequate mechanical strength to functionally replace human tissues, and therefore they often need to be combined with reinforcing structures. While the interaction at the interface between the hydrogel and reinforcing structure is imperative for mechanical function and subsequent biological performance, this interaction is often overlooked. Melt electrowriting enables the production of reinforcing microscale fibers that can be effectively integrated with hydrogels. Yet, studies on the interaction between these micrometer scale fibers and hydrogels are limited. Here, we explored the influence of covalent interfacial interactions between reinforcing structures and silk fibroin methacryloyl hydrogels (silkMA) on the mechanical properties of the construct and cartilage-specific matrix productionin vitro. For this, melt electrowritten fibers of a thermoplastic polymer blend (poly(hydroxymethylglycolide-co-ε-caprolactone):poly(ε-caprolactone) (pHMGCL:PCL)) were compared to those of the respective methacrylated polymer blend pMHMGCL:PCL as reinforcing structures. Photopolymerization of the methacrylate groups, present in both silkMA and pMHMGCL, was used to generate hybrid materials. Covalent bonding between the pMHMGCL:PCL blend and silkMA hydrogels resulted in an elastic response to the application of torque. In addition, an improved resistance was observed to compression (∼3-fold) and traction (∼40-55%) by the scaffolds with covalent links at the interface compared to those without these interactions. Biologically, both types of scaffolds (pHMGCL:PCL and pMHMGCL:PCL) showed similar levels of viability and metabolic activity, also compared to frequently used PCL. Moreover, articular cartilage progenitor cells embedded within the reinforced silkMA hydrogel were able to form a cartilage-like matrix after 28 days ofin vitro culture. This study shows that hybrid cartilage constructs can be engineered with tunable mechanical properties by grafting silkMA hydrogels covalently to pMHMGCL:PCL blend microfibers at the interface.</p>

Topics
  • impedance spectroscopy
  • melt
  • strength
  • interfacial
  • thermoplastic
  • polymer blend