Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Steindorfer, Tobias

  • Google
  • 1
  • 6
  • 13

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Solid Phase Peptide Synthesis on Chitosan Thin Films13citations

Places of action

Chart of shared publication
Mozetič, Miran
1 / 10 shared
Prof
1 / 18 shared
Kovač, Janez
1 / 25 shared
Kargl, Rupert
1 / 23 shared
Katan, Tadeja
1 / 1 shared
Stana Kleinschek, Karin
1 / 46 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Mozetič, Miran
  • Prof
  • Kovač, Janez
  • Kargl, Rupert
  • Katan, Tadeja
  • Stana Kleinschek, Karin
OrganizationsLocationPeople

article

Solid Phase Peptide Synthesis on Chitosan Thin Films

  • Steindorfer, Tobias
  • Mozetič, Miran
  • Prof
  • Kovač, Janez
  • Kargl, Rupert
  • Katan, Tadeja
  • Stana Kleinschek, Karin
Abstract

<p>Stable chitosan thin films can be promising substrates for creating nanometric peptide-bound polyglucosamine layers. Those are of scientific interest since they can have certain structural similarities to bacterial peptidoglycans. Such films were deposited by spin coating from chitosan solutions and modified by acetylation and N-protected amino acids. The masses of deposited materials and their stability in aqueous solutions at different pH values and water interaction were determined with a quartz crystal microbalance with dissipation (QCM-D). The evolution of the surface composition was followed by X-ray photoelectron (XPS) and attenuated total reflectance infrared (ATR-IR) spectroscopy. Morphological changes were measured by atomic force microscopy (AFM), while the surface wettability was monitored by by static water contact angle measurements. The combination of the characterization techniques enabled an insight into the surface chemistry for each treatment step and confirmed the acetylation and coupling of N-protected glycine peptides. The developed procedures are seen as first steps toward preparing thin layers of acetylated chitin, potentially imitating the nanometric peptide substituted glycan layers found in bacterial cell walls.</p>

Topics
  • surface
  • phase
  • thin film
  • x-ray photoelectron spectroscopy
  • atomic force microscopy
  • pH value
  • spin coating