Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kua, Xiang Qi

  • Google
  • 2
  • 4
  • 33

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2021Synthesis, Microstructure, and Properties of High-Molar-Mass Polyglycolide Copolymers with Isolated Methyl Defects17citations
  • 2020Step-Growth Polyesters with Biobased (R)-1,3-Butanediol16citations

Places of action

Chart of shared publication
Altay, Esra
1 / 1 shared
Jang, Yoon Jung
1 / 1 shared
Bates, Frank S.
1 / 90 shared
Derosa, Christopher A.
1 / 2 shared
Chart of publication period
2021
2020

Co-Authors (by relevance)

  • Altay, Esra
  • Jang, Yoon Jung
  • Bates, Frank S.
  • Derosa, Christopher A.
OrganizationsLocationPeople

article

Synthesis, Microstructure, and Properties of High-Molar-Mass Polyglycolide Copolymers with Isolated Methyl Defects

  • Altay, Esra
  • Jang, Yoon Jung
  • Kua, Xiang Qi
Abstract

<p>An efficient, fast, and reliable method for the synthesis of high-molar-mass polyglycolide (PGA) in bulk using bismuth (III) subsalicylate through ring-opening transesterification polymerization is described. The difference between the crystallization (Tc ≈ 180 °C)/degradation (Td ≈ 245 °C) temperatures and the melting temperature (Tm ≈ 222 °C) significantly affects the ability to melt-process PGA homopolymer. To expand these windows, the effect of copolymer microstructure differences through incorporation of methyl groups in pairs using lactide or isolated using methyl glycolide (≤10% methyl) as comonomers on the thermal, mechanical, and barrier properties were studied. Structures of copolymers were characterized by nuclear magnetic resonance (1H and 13C NMR) spectroscopies. Films of copolymers were obtained, and the microstructural and physical properties were analyzed. PGA homopolymers exhibited an approximately 30 °C difference between Tm and Tc, which increased to 68 °C by incorporating up to 10% methyl groups in the chain while maintaining overall thermal stability. Oxygen and water vapor permeation values of solvent-cast nonoriented films of PGA homopolymers were found to be 4.6 cc·mil·m-2·d-1·atm-1 and 2.6 g·mil·m-2·d-1·atm-1, respectively. Different methyl distributions in the copolymer sequence, provided through either lactide or methyl glycolide, affected the resulting gas barrier properties. At 10% methyl insertion, using lactide as a comonomer significantly increased both O2 (32 cc·mil·m-2·d-1·atm-1) and water vapor (12 g·mil·m-2·d-1·atm-1) permeation. However, when methyl glycolide was utilized for methyl insertion at 10% Me content, excellent barrier properties for both O2 (2.9 cc·mil·m-2·d-1·atm-1) and water vapor (1.0 g·mil·m-2·d-1·atm-1) were achieved. </p>

Topics
  • impedance spectroscopy
  • microstructure
  • Oxygen
  • melt
  • defect
  • copolymer
  • homopolymer
  • Nuclear Magnetic Resonance spectroscopy
  • crystallization
  • melting temperature
  • Bismuth