People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Bruns, Nico
Technical University of Darmstadt
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (29/29 displayed)
- 2023Rendering Polyurethane Hydrophilic for Efficient Cellulose Reinforcement in Melt‐Spun Nanocomposite Fiberscitations
- 2023Synthesis of artificial cells via biocatalytic polymerisation-induced self-assembly
- 2023Artificial cell synthesis using biocatalytic polymerization-induced self-assemblycitations
- 2022Donor–acceptor stenhouse adduct-polydimethylsiloxane-conjugates for enhanced photoswitching in bulk polymerscitations
- 2021Nano‐3D‐printed photochromic micro‐objectscitations
- 2021Infiltration of proteins in cholesteric cellulose structurescitations
- 2020Tuning the properties of a UV-polymerized, cross-linked solid polymer electrolyte for lithium batteriescitations
- 2020Tuning the Properties of a UV-Polymerized, Cross-Linked Solid Polymer Electrolyte for Lithium Batteriescitations
- 2018Self-reporting fiber-reinforced composites that mimic the ability of biological materials to sense and report damagecitations
- 2018DNA-coated functional oil dropletscitations
- 2017Visible light-responsive DASA-polymer conjugatescitations
- 2017Visible light-responsive DASA-polymer conjugatescitations
- 2017Controlling enzymatic polymerization from surfaces with switchable bioaffinitycitations
- 2017Structural behavior of cylindrical polystyrene-block-poly(ethylene-butylene)-block-polystyrene (SEBS) triblock copolymer containing MWCNTscitations
- 2016Protein cages and synthetic polymerscitations
- 2014Mechanical unfolding of a fluorescent protein enables self-reporting of damage in carbon-fibre-reinforced compositescitations
- 2014Mechanical unfolding of a fluorescent protein enables self-reporting of damage in carbon-fibre-reinforced compositescitations
- 2014A chaperonin as protein nanoreactor for atom-transfer radical polymerizationcitations
- 2014Polymeric particulates for subunit vaccine deliverycitations
- 2013Combining polymers with the functionality of proteinscitations
- 2013Combining Polymers with the Functionality of Proteins: New Concepts for Atom Transfer Radical Polymerization, Nanoreactors and Damage Self-reporting Materialscitations
- 2013Hemoglobin and red blood cells catalyze atom transfer radical polymerizationcitations
- 2012ATRPasescitations
- 2012Use of a novel initiator for synthesis of amino-end functionalized polystyrene (NH 2-PS) by atom transfer radical polymerizationcitations
- 2011Selective and responsive nanoreactorscitations
- 2011Horseradish peroxidase as a catalyst for atom transfer radical polymerizationcitations
- 2011Phase behavior of vesicle-forming block copolymers in aqueous solutionscitations
- 2011Self-reporting materialscitations
- 2006Optical biochemical sensor for determining hydroperoxides in nonpolar organic liquids as archetype for sensors consisting of amphiphilic conetworks as immobilisation matricescitations
Places of action
Organizations | Location | People |
---|
article
Infiltration of proteins in cholesteric cellulose structures
Abstract
<p>Cellulose nanocrystals (CNCs) can spontaneously self-assemble into chiral nematic (cn) structures, similar to natural cholesteric organizations. The latter display highly dissipative fracture propagation mechanisms given their "brick" (particles) and "mortar" (soft matrix) architecture. Unfortunately, CNCs in liquid media have strong supramolecular interactions with most macromolecules, leading to aggregated suspensions. Herein, we describe a method to prepare nanocomposite materials from chiral nematic CNCs (cn-CNCs) with strongly interacting secondary components. Films of cn-CNCs were infiltrated at various loadings with strongly interacting silk proteins and bovine serum albumin. For comparison and to determine the molecular weight range of macromolecules that can infiltrate cn-CNC films, they were also infiltrated with a range of poly(ethylene glycol) polymers that do not interact strongly with CNCs. The extent and impact of infiltration were evaluated by studying the optical reflection properties of the resulting hybrid materials (UV-vis spectroscopy), while fracture dissipation mechanisms were observed via electron microscopy. We propose that infiltration of cn-CNCs enables the introduction of virtually any secondary phase for nanocomposite formation that is otherwise not possible using simple mixing or other conventional approaches.</p>