People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kim, Yang-Hee
University of Southampton
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2024Biofabrication of nanocomposite-based scaffolds containing human bone extracellular matrix for the differentiation of skeletal stem and progenitor cellscitations
- 2024Biofabrication of nanocomposite-based scaffolds containing human bone extracellularmatrix for the differentiation of skeletal stem and progenitor cellscitations
- 2023Biofabrication of nanocomposite-based scaffolds containing human bone extracellular matrix for the differentiation of skeletal stem and progenitor cellscitations
- 2021Nanocomposite clay-based bioinks for skeletal tissue engineeringcitations
- 2020Bisphosphonate nanoclay edge-site interactions facilitate hydrogel self-assembly and sustained growth factor localizationcitations
- 2020Bisphosphonate nanoclay edge-site interactions facilitate hydrogel self-assembly and sustained growth factor localizationcitations
- 2020Nanoclay-polyamine composite hydrogel for topical delivery of nitric oxide gas via innate gelation characteristics of laponitecitations
- 2020Nanoclay-based 3D printed scaffolds promote vascular ingrowth ex vivo and generate bone mineral tissue in vitro and in vivo
- 2019Osteogenic and angiogenic tissue formation in high fidelity nanocomposite Laponite-gelatin bioinkscitations
Places of action
Organizations | Location | People |
---|
article
Nanoclay-polyamine composite hydrogel for topical delivery of nitric oxide gas via innate gelation characteristics of laponite
Abstract
Because nitric oxide (NO) gas is an endogenously produced signaling molecule related to numerous physiological functions, manystudies have been conducted to develop NO delivery systems for potential biomedical applications. However, NO is a reactive radical gas molecule that has a very short life-time and readily transforms into nitrogen oxide species via reaction with oxygen species. Therefore, it is necessary to develop an NO delivery carrier that allows local release of the NO gas at the site of application. In this study, Laponite (LP) nanoclay was used to fabricate an NO delivery carrier through the formation of Laponite–polyamine (LP–PAn) composites. The Laponite clay and pentaethylenehexamine (PEHA) formed a macromolecular structure by electrostatic interaction and the nitric oxide donor, N-diazeniumdiolate (NONOates), was synthesized into the LP–PAn composite. We investigated the conformation of the LP–PAn composite structure and the NO donor formation by ζ potential, X-ray diffraction, and UV–vis and Fourier transform infrared (FT-IR) spectroscopies and also by analyzing the NO release profile. Additionally, we confirmed the applicability in biomedical applications via a cell viability and in vitro endothelial cell tube formation assay.