Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Zb, Wen

  • Google
  • 1
  • 4
  • 40

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2018Ultrasensitive Fluorescent Assay Based on a Rolling-Circle-Amplification-Assisted Multisite-Strand-Displacement-Reaction Signal-Amplification Strategy.40citations

Places of action

Chart of shared publication
Yuan, Ruo
1 / 2 shared
Yn, Zheng
1 / 2 shared
Wb, Liang
1 / 3 shared
Yq, Chai
1 / 3 shared
Chart of publication period
2018

Co-Authors (by relevance)

  • Yuan, Ruo
  • Yn, Zheng
  • Wb, Liang
  • Yq, Chai
OrganizationsLocationPeople

article

Ultrasensitive Fluorescent Assay Based on a Rolling-Circle-Amplification-Assisted Multisite-Strand-Displacement-Reaction Signal-Amplification Strategy.

  • Yuan, Ruo
  • Yn, Zheng
  • Wb, Liang
  • Zb, Wen
  • Yq, Chai
Abstract

Heavy metal ions are persistent environmental contaminants and pose a great threat to human health, which has prompted demand for new methods to selectively identify and detect these metal ions. Herein, a novel fluorescent assay based on a rolling-circle-amplification (RCA)-assisted multisite-strand-displacement-reaction (SDR) signal-amplification strategy was proposed for the ultrasensitive detection of heavy metal ions with lead ions (Pb2+) as a model. The proposed strategy not only achieved the target recycling but also introduced RCA induced by released DNAzyme. Most importantly, the RCA product was adapted as the initiator to provide multiple sites for SDR, which could displace signal duplexes from RCA products to effectively avoid the self-quenching of signal-probe assembly on the RCA product. Therefore, the amplification efficiency and the detection sensitivity could be improved significantly. As expected, the proposed strategy demonstrated good performance for the determination of Pb2+ with a linear range from 0.1 to 50 nM and a detection limit down to 0.03 nM. Using this strategy for intracellular-Pb2+ detection, a favorable property was obtained. Furthermore, the proposed strategy could be also expanded for the determination of microRNA, proteins, and other biomolecules, offering a novel avenue for environmental assays and clinical diagnostics.

Topics
  • quenching