Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Levkin, Pavel A.

  • Google
  • 5
  • 30
  • 54

Karlsruhe Institute of Technology

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (5/5 displayed)

  • 2024Solvent‐Independent 3D Printing of Organogels1citations
  • 2023Tough PEGgels by In Situ Phase Separation for 4D Printingcitations
  • 2022Inverse Vulcanization of Norbornenylsilanes: Soluble Polymers with Controllable Molecular Properties via Siloxane Bonds25citations
  • 2021Droplet microarrays for cell culture: effect of surface properties and nanoliter culture volume on global transcriptomic landscape13citations
  • 2018Improved extraction repeatability and spectral reproducibility for liquid extraction surface analysis–mass spectrometry using superhydrophobic–superhydrophilic patterning15citations

Places of action

Chart of shared publication
Niemeyer, Christof M.
1 / 10 shared
Domínguez, Carmen M.
1 / 6 shared
Kuzina, Mariia A.
1 / 1 shared
Wilhelm, Manfred
2 / 39 shared
Mandsberg, Nikolaj Kofoed
1 / 8 shared
Hoffmann, Maxi
1 / 4 shared
Heck, Matthias
1 / 2 shared
Wang, Zhenwu
1 / 1 shared
Yang, Wenwu
1 / 1 shared
Hoffmann, M.
1 / 28 shared
Falkenstein, P.
1 / 1 shared
Rutschmann, M.
1 / 1 shared
Scheiger, V. W.
1 / 1 shared
Urbschat, K.
1 / 1 shared
Scheiger, J. M.
2 / 2 shared
Sengpiel, T.
1 / 1 shared
Matysik, J.
1 / 1 shared
Grimm, A.
1 / 3 shared
Wilhelm, M.
1 / 11 shared
Théato, Patrick
1 / 12 shared
Benz, M.
1 / 2 shared
Chakraborty, S.
1 / 13 shared
Gourain, V.
1 / 1 shared
Popova, A. A.
1 / 1 shared
Meurs, Joris
1 / 1 shared
Barrett, David A.
1 / 1 shared
Widmaier, Simon
1 / 1 shared
Bunch, Josephine
1 / 1 shared
Kim, Dong-Hyun
1 / 1 shared
Alexander, Morgan R.
1 / 10 shared
Chart of publication period
2024
2023
2022
2021
2018

Co-Authors (by relevance)

  • Niemeyer, Christof M.
  • Domínguez, Carmen M.
  • Kuzina, Mariia A.
  • Wilhelm, Manfred
  • Mandsberg, Nikolaj Kofoed
  • Hoffmann, Maxi
  • Heck, Matthias
  • Wang, Zhenwu
  • Yang, Wenwu
  • Hoffmann, M.
  • Falkenstein, P.
  • Rutschmann, M.
  • Scheiger, V. W.
  • Urbschat, K.
  • Scheiger, J. M.
  • Sengpiel, T.
  • Matysik, J.
  • Grimm, A.
  • Wilhelm, M.
  • Théato, Patrick
  • Benz, M.
  • Chakraborty, S.
  • Gourain, V.
  • Popova, A. A.
  • Meurs, Joris
  • Barrett, David A.
  • Widmaier, Simon
  • Bunch, Josephine
  • Kim, Dong-Hyun
  • Alexander, Morgan R.
OrganizationsLocationPeople

article

Improved extraction repeatability and spectral reproducibility for liquid extraction surface analysis–mass spectrometry using superhydrophobic–superhydrophilic patterning

  • Meurs, Joris
  • Barrett, David A.
  • Widmaier, Simon
  • Bunch, Josephine
  • Kim, Dong-Hyun
  • Levkin, Pavel A.
  • Alexander, Morgan R.
Abstract

A major problem limiting reproducible use of liquid extraction surface analysis (LESA) array sampling of dried surface-deposited liquid samples is the unwanted spread of extraction solvent beyond the dried sample limits, resulting in unreliable data. Here, we explore the use of the Droplet Microarray (DMA), which consists of an array of superhydrophilic spots bordered by a superhydrophobic material giving the potential to confine both the sample spot and the LESA extraction solvent in a defined area. We investigated the DMA method in comparison with a standard glass substrate using LESA analysis of a mixture of biologically relevant compounds with a wide mass range and different physicochemical properties. The optimized DMA method was subsequently applied to urine samples from a human intervention study. Relative standard deviations for the signal intensities were all reduced at least 3-fold when performing LESA-MS on the DMA surface compared with a standard glass surface. Principal component analysis revealed more tight clusters indicating improved spectral reproducibility for a human urine sample extracted from the DMA compared to glass. Lastly, in urine samples from an intervention study, more significant ions (145) were identified when using LESA-MS spectra of control and test urine extracted from the DMA. We demonstrate that DMA provides a surface-assisted LESA-MS method delivering significant improvement of the surface extraction repeatability leading to the acquisition of more robust and higher quality data. The DMA shows potential to be used for LESA-MS for controlled and reproducible surface extraction and for acquisition of high quality, qualitative data in a high-throughput manner.

Topics
  • impedance spectroscopy
  • surface
  • compound
  • cluster
  • extraction
  • glass
  • glass
  • mass spectrometry
  • spectrometry