People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Desmet, Gert
Vrije Universiteit Brussel
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2024Detailed analysis of the effective and intra-particle diffusion coefficient of proteins at elevated pressure in columns packed with wide-pore core-shell particlescitations
- 2023Development of a 3D-Printable, Porous, and Chemically Active Material Filled with Silica Particles and its Application to the Fabrication of a Microextraction Devicecitations
- 2022Measurement of the molecular diffusion coefficient and the effective longitudinal diffusion under supercritical fluid chromatography conditions in packed bed columnscitations
- 2022Review of recent insights in the measurement and modelling of the B-term dispersion and related mass transfer properties in liquid chromatographycitations
- 2022Vacuum-driven assembly of electrostatically levitated microspheres on perforated surfacescitations
- 2021Measurement and modelling of the intra-particle diffusion and b-term in reversed-phase liquid chromatographycitations
- 2020Spatial Segregation of Microspheres by Rubbing-Induced Triboelectrification on Patterned Surfacescitations
- 2020A Methodology for the Estimation and Modelling of the Obstruction Factor in the Expression for Mesopore Diffusion in Reversed-Phase Liquid Chromatography Particlescitations
- 2019Study of peak capacities generated by a porous layered radially elongated pillar array column coupled to a nano-LC systemcitations
- 2011High-resolution separations of protein isoforms with liquid chromatography time-of-flight mass spectrometry using polymer monolithic capillary columns
- 2011Ultra-high-resolution separations of intact proteins with LC-TOF-MS using polymer monolithic columns
- 2008Errors involved in the Existing B-term Expressions for the Longitudinal Diffusion in Fully Porous Chromatographic Media. Part II: Experimental data in Packed Columns and Surface Diffusion Measurements
Places of action
Organizations | Location | People |
---|
article
Development of a 3D-Printable, Porous, and Chemically Active Material Filled with Silica Particles and its Application to the Fabrication of a Microextraction Device
Abstract
<p>We report on the first successful attempt to produce a silica/polymer composite with retained C18 silica sorptive properties that can be reliably printed using three-dimensional (3D) FDM printing. A 3D printer provides an exceptional tool for producing complex objects in an easy and inexpensive manner and satisfying the current custom demand of research. Fused deposition modeling (FDM) is the most popular 3D-printing technique based on the extrusion of a thermoplastic material. The lack of appropriate materials limits the development of advanced applications involving directly 3D-printed devices with intrinsic chemical activity. Progress in sample preparation, especially for complex sample matrices and when mass spectrometry is favorable, remains a vital research field. Silica particles, for example, which are commonly used for extraction, cannot be directly extruded and are not readily workable in a powder form. The availability of composite materials containing a thermoplastic polymer matrix and dispersed silica particles would accelerate research in this area. This paper describes how to prepare a polypropylene (PP)/acrylonitrile-butadiene-styrene (ABS)/C18-functionalized silica composite that can be processed by FDM 3D printing. We present a method for producing the filament as well as a procedure to remove ABS by acetone rinsing (to activate the material). The result is an activated 3D-printed object with a porous structure that allows access to silica particles while maintaining macroscopic size and shape. The 3D-printed device is intended for use in a solid-phase microextraction (SPME) procedure. The proposed composite’s effectiveness is demonstrated for the microextraction of glimepiride, imipramine, and carbamazepine. The complex honeycomb geometry of the sorbent has shown to be superior to the simple tubular sorbent, which proves the benefits of 3D printing. The 3D-printed sorbent’s shape and microextraction parameters were fine-tuned to provide satisfactory recoveries (33-47%) and high precision (2-6%), especially for carbamazepine microextraction.</p>