Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Winkler, David

  • Google
  • 3
  • 14
  • 23

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2023Two-Dimensional and Three-Dimensional Time-of-Flight Secondary Ion Mass Spectrometry Image Feature Extraction Using a Spatially Aware Convolutional Autoencoder15citations
  • 2023Exploring the Relationship between Polymer Surface Chemistry and Bacterial Attachment Using ToF‐SIMS and Self‐Organizing maps8citations
  • 2022Applications of multivariate analysis and unsupervised machine learning to ToF-SIMS images of organic, bioorganic, and biological systemscitations

Places of action

Chart of shared publication
Torney, Steven
1 / 1 shared
Gardner, Wil
3 / 8 shared
Pietersz, Geoffrey
1 / 2 shared
Cutts, Suzanne M.
1 / 2 shared
Pigram, Paul
3 / 10 shared
Muir, Benjamin Ward
3 / 14 shared
Hook, Andrew L.
1 / 5 shared
Chang, Chien-Yi
1 / 1 shared
Ballabio, Davide
1 / 5 shared
Martyn, C. Davies
1 / 1 shared
Wong, See Yoong
1 / 2 shared
Alexander, Morgan
1 / 4 shared
Williams, Paul
1 / 7 shared
Mei, Ying
1 / 2 shared
Chart of publication period
2023
2022

Co-Authors (by relevance)

  • Torney, Steven
  • Gardner, Wil
  • Pietersz, Geoffrey
  • Cutts, Suzanne M.
  • Pigram, Paul
  • Muir, Benjamin Ward
  • Hook, Andrew L.
  • Chang, Chien-Yi
  • Ballabio, Davide
  • Martyn, C. Davies
  • Wong, See Yoong
  • Alexander, Morgan
  • Williams, Paul
  • Mei, Ying
OrganizationsLocationPeople

article

Two-Dimensional and Three-Dimensional Time-of-Flight Secondary Ion Mass Spectrometry Image Feature Extraction Using a Spatially Aware Convolutional Autoencoder

  • Torney, Steven
  • Winkler, David
  • Gardner, Wil
  • Pietersz, Geoffrey
  • Cutts, Suzanne M.
  • Pigram, Paul
  • Muir, Benjamin Ward
Abstract

Feature extraction algorithms are an important class of unsupervised methods used to reduce data dimensionality. They have been applied extensively for time-of-flight secondary ion mass spectrometry (ToF-SIMS) imaging─commonly, matrix factorization (MF) techniques such as principal component analysis have been used. A limitation of MF is the assumption of linearity, which is generally not accurate for ToF-SIMS data. Recently, nonlinear autoencoders have been shown to outperform MF techniques for ToF-SIMS image feature extraction. However, another limitation of most feature extraction methods (including autoencoders) that is particularly important for hyperspectral data is that they do not consider spatial information. To address this limitation, we describe the application of the convolutional autoencoder (CNNAE) to hyperspectral ToF-SIMS imaging data. The CNNAE is an artificial neural network developed specifically for hyperspectral data that uses convolutional layers for image encoding, thereby explicitly incorporating pixel neighborhood information. We compared the performance of the CNNAE with other common feature extraction algorithms for two biological ToF-SIMS imaging data sets. We investigated the extracted features and used the dimensionality-reduced data to train additional ML algorithms. By converting two-dimensional convolutional layers to three-dimensional (3D), we also showed how the CNNAE can be extended to 3D ToF-SIMS images. In general, the CNNAE produced features with significantly higher contrast and autocorrelation than other techniques. Furthermore, histologically recognizable features in the data were more accurately represented. The extension of the CNNAE to 3D data also provided an important proof of principle for the analysis of more complex 3D data sets.

Topics
  • impedance spectroscopy
  • extraction
  • two-dimensional
  • spectrometry
  • selective ion monitoring
  • secondary ion mass spectrometry