Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Baranov, Dmitry

  • Google
  • 23
  • 81
  • 1618

Lund University

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (23/23 displayed)

  • 2024Exogenous Metal Cations in the Synthesis of CsPbBr3 Nanocrystals and Their Interplay with Tertiary Amines3citations
  • 2024Exogenous Metal Cations in the Synthesis of CsPbBr3 Nanocrystals and Their Interplay with Tertiary Amines3citations
  • 2023Collective Diffraction Effects in Perovskite Nanocrystal Superlattices29citations
  • 2022Exploiting the Transformative Features of Metal Halides for the Synthesis of CsPbBr3@SiO2 Core-Shell Nanocrystals43citations
  • 2022Highly Emitting Perovskite Nanocrystals with 2-Year Stability in Water through an Automated Polymer Encapsulation for Bioimaging59citations
  • 2021Detection of Pb2+traces in dispersion of Cs4PbBr6 nanocrystals by in situ liquid cell transmission electron microscopy3citations
  • 2021Structure and Surface Passivation of Ultrathin Cesium Lead Halide Nanoplatelets Revealed by Multilayer Diffraction32citations
  • 2021Metamorphoses of Cesium Lead Halide Nanocrystals46citations
  • 2021Exploiting the Transformative Features of Metal Halides for the Synthesis of CsPbBr3@SiO2 Core–Shell Nanocrystals43citations
  • 2020Superlattices are greener on the other side61citations
  • 2020Transforming colloidal Cs4PbBr6 nanocrystals with poly(maleic anhydride-alt-1-octadecene) into stable CsPbBr3 perovskite emitters through intermediate heterostructures71citations
  • 2020Cs 3 Cu 4 In 2 Cl 13 Nanocrystals:A Perovskite-Related Structure with Inorganic Clusters at A Sites21citations
  • 2020Cs3Cu4In2Cl13 Nanocrystals21citations
  • 2019Purification of Oleylamine for Materials Synthesis and Spectroscopic Diagnostics for trans Isomers62citations
  • 2019Fully Inorganic Ruddlesden-Popper Double Cl-I and Triple Cl-Br-I Lead Halide Perovskite Nanocrystals77citations
  • 2018Colloidal Synthesis of Double Perovskite Cs2AgInCl6 and Mn-Doped Cs2AgInCl6 Nanocrystals490citations
  • 2018Colloidal Synthesis of Double Perovskite Cs2AgInCl6 and Mn-Doped Cs2AgInCl6 Nanocrystals490citations
  • 2007Synthesis of cerium oxide nanoparticles in polyethylene matrix1citations
  • 2006Optical properties of cadmium sulfide nanoparticles on the surface of polytetrafluoroethylene nanogranules18citations
  • 2006Cobalt-containing core-shell nanoparticles on the surface of poly(tetrafluoroethylene) microgranules16citations
  • 2006Copper nanoparticles on the surface of ultradispersed polytetrafluoroethylene nanograins3citations
  • 2006New magnetic materials based on cobalt and iron-containing nanoparicles20citations
  • 2005Synthesis and structure of polyethylene-matrix composites containing zinc oxide nanoparticles6citations

Places of action

Chart of shared publication
Manna, Liberato
16 / 61 shared
Divitini, Giorgio
2 / 37 shared
Goldoni, Luca
5 / 12 shared
Panneerselvam, Iyyappa Rajan
2 / 2 shared
Li, Zhanzhao
2 / 2 shared
Infante, Ivan
5 / 39 shared
Ivanov, Yurii P.
2 / 26 shared
Wu, Ye
2 / 4 shared
Trizio, Luca De
5 / 11 shared
Imran, Muhammad
3 / 60 shared
Zito, Juliette
2 / 14 shared
De Trizio, Luca
4 / 17 shared
Filippi, Umberto
1 / 1 shared
Giannini, Cinzia
2 / 18 shared
Toso, Stefano
4 / 10 shared
Scarfiello, Riccardo
3 / 8 shared
Carbone, Luigi
2 / 7 shared
Brescia, Rosaria
2 / 11 shared
Colombara, Diego
2 / 14 shared
Rossi, Christian
2 / 2 shared
Caputo, Gianvito
3 / 8 shared
Arciniegas, Milena P.
1 / 2 shared
Collantes, Cynthia
1 / 1 shared
Pellegrino, Teresa
1 / 10 shared
Avugadda, Sahitya Kumar
1 / 1 shared
Dhanabalan, Balaji
1 / 1 shared
Silvestri, Niccolo
1 / 2 shared
Castelli, Andrea
1 / 1 shared
Fernandez, Tamara
1 / 1 shared
Dang, Zhiya
7 / 16 shared
Brennan, Michael C.
1 / 2 shared
Zhukovskyi, Maksym
1 / 1 shared
Kuno, Masaru
1 / 2 shared
Pavlovetc, Ilia M.
1 / 1 shared
Marras, Sergio
3 / 15 shared
Pisignano, Dario
1 / 21 shared
Fabbri, Filippo
1 / 12 shared
Portone, Alberto
1 / 2 shared
Camposeo, Andrea
1 / 5 shared
Petralanda, Urko
3 / 8 shared
Almeida, Guilherme
2 / 4 shared
Mugnaioli, Enrico
2 / 23 shared
Griesi, Andrea
2 / 3 shared
Kaiukov, Roman
2 / 2 shared
Gemmi, Mauro
2 / 29 shared
Jonas, David M.
1 / 1 shared
Carollo, Alexa R.
1 / 1 shared
Curtis, Anna C.
1 / 1 shared
Mateo-Tejada, Alina M.
1 / 1 shared
Douglass, Callum R.
1 / 1 shared
Lynch, Michael J.
1 / 1 shared
Abdelhady, Ahmed L.
1 / 8 shared
Sartori, Emanuela
1 / 2 shared
Bals, Sara
1 / 93 shared
Akkerman, Quinten A.
1 / 10 shared
Bladt, Eva
1 / 17 shared
Prato, Mirko
2 / 45 shared
Fanciulli, Marco
2 / 25 shared
Drago, Filippo
2 / 5 shared
Brovelli, Sergio
2 / 24 shared
Pinchetti, Valerio
2 / 6 shared
Locardi, Federico
2 / 7 shared
Ferretti, Maurizio
2 / 25 shared
Cirignano, Matilde
2 / 3 shared
Yurkov, G. Yu
6 / 6 shared
Gorobinskii, L. V.
1 / 1 shared
Ushakov, N. M.
2 / 2 shared
Gubin, S. P.
5 / 6 shared
Kosobudskiǐ, I. D.
1 / 1 shared
Zapsis, K. V.
2 / 2 shared
Kataeva, N. A.
1 / 1 shared
Kozinkin, A. V.
2 / 2 shared
Moksin, S. A.
1 / 1 shared
Shvachko, O. V.
1 / 1 shared
Koksharov, Yu A.
2 / 2 shared
Nedoseikina, T. I.
2 / 2 shared
Dotsenko, I. P.
2 / 2 shared
Zhuravleva, M. N.
1 / 1 shared
Ponomareva, K. Yu
1 / 1 shared
Kosobudsky, I. D.
1 / 1 shared
Kochubei, V. I.
1 / 1 shared
Chart of publication period
2024
2023
2022
2021
2020
2019
2018
2007
2006
2005

Co-Authors (by relevance)

  • Manna, Liberato
  • Divitini, Giorgio
  • Goldoni, Luca
  • Panneerselvam, Iyyappa Rajan
  • Li, Zhanzhao
  • Infante, Ivan
  • Ivanov, Yurii P.
  • Wu, Ye
  • Trizio, Luca De
  • Imran, Muhammad
  • Zito, Juliette
  • De Trizio, Luca
  • Filippi, Umberto
  • Giannini, Cinzia
  • Toso, Stefano
  • Scarfiello, Riccardo
  • Carbone, Luigi
  • Brescia, Rosaria
  • Colombara, Diego
  • Rossi, Christian
  • Caputo, Gianvito
  • Arciniegas, Milena P.
  • Collantes, Cynthia
  • Pellegrino, Teresa
  • Avugadda, Sahitya Kumar
  • Dhanabalan, Balaji
  • Silvestri, Niccolo
  • Castelli, Andrea
  • Fernandez, Tamara
  • Dang, Zhiya
  • Brennan, Michael C.
  • Zhukovskyi, Maksym
  • Kuno, Masaru
  • Pavlovetc, Ilia M.
  • Marras, Sergio
  • Pisignano, Dario
  • Fabbri, Filippo
  • Portone, Alberto
  • Camposeo, Andrea
  • Petralanda, Urko
  • Almeida, Guilherme
  • Mugnaioli, Enrico
  • Griesi, Andrea
  • Kaiukov, Roman
  • Gemmi, Mauro
  • Jonas, David M.
  • Carollo, Alexa R.
  • Curtis, Anna C.
  • Mateo-Tejada, Alina M.
  • Douglass, Callum R.
  • Lynch, Michael J.
  • Abdelhady, Ahmed L.
  • Sartori, Emanuela
  • Bals, Sara
  • Akkerman, Quinten A.
  • Bladt, Eva
  • Prato, Mirko
  • Fanciulli, Marco
  • Drago, Filippo
  • Brovelli, Sergio
  • Pinchetti, Valerio
  • Locardi, Federico
  • Ferretti, Maurizio
  • Cirignano, Matilde
  • Yurkov, G. Yu
  • Gorobinskii, L. V.
  • Ushakov, N. M.
  • Gubin, S. P.
  • Kosobudskiǐ, I. D.
  • Zapsis, K. V.
  • Kataeva, N. A.
  • Kozinkin, A. V.
  • Moksin, S. A.
  • Shvachko, O. V.
  • Koksharov, Yu A.
  • Nedoseikina, T. I.
  • Dotsenko, I. P.
  • Zhuravleva, M. N.
  • Ponomareva, K. Yu
  • Kosobudsky, I. D.
  • Kochubei, V. I.
OrganizationsLocationPeople

article

Metamorphoses of Cesium Lead Halide Nanocrystals

  • Manna, Liberato
  • Toso, Stefano
  • Baranov, Dmitry
Abstract

<p class="articleBody_abstractText">Following the impressive developmentof bulk lead-based perovskite photovoltaics, the “perovskite fever” didnot spare nanochemistry. In just a few years, colloidal cesium leadhalide perovskite nanocrystals have conquered researchers worldwide withtheir easy synthesis and color-pure photoluminescence. Thesenanomaterials promise cheap solution-processed lasers, scintillators,and light-emitting diodes of record brightness and efficiency. However,that promise is threatened by poor stability and unwanted reactivityissues, throwing down the gauntlet to chemists.</p><p class="articleBody_abstractText">Moregenerally, Cs–Pb–X nanocrystals have opened an exciting chapter in thechemistry of colloidal nanocrystals, because their ionic nature andbroad diversity have challenged many paradigms established bynanocrystals of long-studied metal chalcogenides, pnictides, and oxides.The chemistry of colloidal Cs–Pb–X nanocrystals is synonymous withchange: these materials demonstrate an intricate pattern of shapes andcompositions and readily transform under physical stimuli or the actionof chemical agents. In this Account, we walk through four types ofCs–Pb–X nanocrystal metamorphoses: change of structure, color, shape,and surface. These transformations are often interconnected; forexample, a change in shape may also entail a change of color.</p><p class="articleBody_abstractText">Theionic bonding, high anion mobility due to vacancies, and preservationof cationic substructure in the Cs–Pb–X compounds enable fast anionexchange reactions, allowing the precise control of the halidecomposition of nanocrystals of perovskites and related compounds (e.g.,CsPbCl<sub>3</sub> ⇄ CsPbBr<sub>3</sub> ⇄ CsPbI<sub>3</sub> and Cs<sub>4</sub>PbCl<sub>6</sub> ⇄ Cs<sub>4</sub>PbBr<sub>6</sub> ⇄ Cs<sub>4</sub>PbI<sub>6</sub>)and tuning of their absorption edge and bright photoluminescence acrossthe visible spectrum. Ion exchanges, however, are just one aspect of aricher chemistry.</p><p class="articleBody_abstractText">Cs–Pb–Xnanocrystals are able to capture or release (in short, trade) ions oreven neutral species from or to the surrounding environment, causingmajor changes to their structure and properties. The trade of neutralPbX<sub>2</sub> units allows Cs–Pb–X nanocrystals to cross the boundaries among four different types of compounds: 4CsX + PbX<sub>2</sub> ⇄ Cs<sub>4</sub>PbBr<sub>6</sub> + 3PbX<sub>2</sub> ⇄ 4CsPbBr<sub>3</sub> + PbX<sub>2</sub> ⇄ 4CsPb<sub>2</sub>X<sub>5</sub>. These reactions do not occur at random, because the reactant and product nanocrystals are connected by the Cs<sup>+</sup>cation substructure preservation principle, stating that ion tradereactions can transform one compound into another by means ofdistorting, expanding, or contracting their shared Cs<sup>+</sup> cation substructure.</p><p class="articleBody_abstractText">Thenanocrystal surface is a boundary between the core and the surroundingenvironment of Cs–Pb–X nanocrystals. The surface influences nanocrystalstability, optical properties, and shape. For these reasons, the dynamicsurface of Cs–Pb–X nanocrystals has been studied in detail, especiallyin CsPbX<sub>3</sub> perovskites. Two takeaways have emerged from thesestudies. First, the competition between primary alkylammonium and cesiumcations for the surface sites during the CsPbX<sub>3</sub> nanocrystalnucleation and growth governs the cube/plate shape equilibrium.Short-chain acids and branched amines influence that equilibrium andenable shape-shifting synthesis of pure CsPbX<sub>3</sub> cubes,nanoplatelets, nanosheets, or nanowires. Second, quaternary ammoniumhalides are emerging as superior ligands that extend the shelf life ofCs–Pb–X colloidal nanomaterials, boost their photoluminescence quantumyield, and prevent foreign ions from escaping the nanocrystals. That isaccomplished by combining reduced ligand solubility, due to the branchedorganic ammonium cation, with the surface-healing capabilities of thehalide counterions, which are small Lewis bases.</p>

Topics
  • perovskite
  • impedance spectroscopy
  • surface
  • compound
  • photoluminescence
  • mobility
  • random
  • amine