Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Cheynier, Veronique, V.

  • Google
  • 2
  • 5
  • 476

National Research Institute for Agriculture, Food and Environment

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2012Phenolic compounds: from plants to foods414citations
  • 2007Assessment of the molecular weight distribution of tannin fractions through MALDI-TOF MS analysis of protein-tannin complexes62citations

Places of action

Chart of shared publication
Cole, R. B.
1 / 1 shared
Fulcrand, Hélène
1 / 3 shared
Sommerer, Nicolas
1 / 2 shared
Mane, Carine
1 / 1 shared
Yalcin, T.
1 / 1 shared
Chart of publication period
2012
2007

Co-Authors (by relevance)

  • Cole, R. B.
  • Fulcrand, Hélène
  • Sommerer, Nicolas
  • Mane, Carine
  • Yalcin, T.
OrganizationsLocationPeople

article

Assessment of the molecular weight distribution of tannin fractions through MALDI-TOF MS analysis of protein-tannin complexes

  • Cheynier, Veronique, V.
  • Cole, R. B.
  • Fulcrand, Hélène
  • Sommerer, Nicolas
  • Mane, Carine
  • Yalcin, T.
Abstract

International audience ; An innovative mass spectrometry method was developed for determining mass distributions of tannin fractions that cannot be approached through direct MALDI-TOF analysis. It was applied to three procyanidin fractions with average degrees of polymerizations = 3, 9, and 28, respectively, and one gallotannin fraction (Tara tannin). The proposed approach consists of MALDI-TOF analysis of the soluble complexes formed between these tannin fractions and bovine serum albumin (BSA). Complexes were detected as an unresolved "hump" following the BSA signal, and spectra were mathematically processed to determine the parameters relative to the protein-tannin complexes, which are the number-average molecular weight (M-n), the weight-average molecular weight (M-w), and the polydispersity index (PI) for each tannin fraction. Regarding condensed tannins, results are consistent with those of the standard method (thiolysis followed by HPLC separation) for all tested fractions. The method was successfully applied to a hydrolyzable tannin fraction but no standard method is available for comparison

Topics
  • impedance spectroscopy
  • mass spectrometry
  • molecular weight
  • matrix-assisted laser desorption–ionisation
  • spectrometry
  • polydispersity
  • High-performance liquid chromatography