Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Marco, M. P.

  • Google
  • 4
  • 8
  • 384

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2009Immunoassay for folic acid detection in vitamin-fortified milk based on electrochemical magneto sensors80citations
  • 2007Electrochemical magneto immunosensing of antibiotic residues in milk117citations
  • 2007Electrochemical biosensing of pesticide residues based on affinity biocomposite platforms37citations
  • 2006Electrochemical magnetoimmunosensing strategy for the detection of pesticides residues150citations

Places of action

Chart of shared publication
Lermo, A.
1 / 4 shared
Pividori Gurgo, María Isabel
4 / 32 shared
Hernández, S.
1 / 8 shared
Fabiano, S.
1 / 9 shared
Galve, R.
4 / 4 shared
Alegret, Salvador
4 / 25 shared
Adrian, J.
1 / 1 shared
Zacco, E.
3 / 6 shared
Chart of publication period
2009
2007
2006

Co-Authors (by relevance)

  • Lermo, A.
  • Pividori Gurgo, María Isabel
  • Hernández, S.
  • Fabiano, S.
  • Galve, R.
  • Alegret, Salvador
  • Adrian, J.
  • Zacco, E.
OrganizationsLocationPeople

article

Electrochemical magnetoimmunosensing strategy for the detection of pesticides residues

  • Pividori Gurgo, María Isabel
  • Galve, R.
  • Alegret, Salvador
  • Zacco, E.
  • Marco, M. P.
Abstract

A novel electrochemical immunosensing strategy for the detection of atrazine based on magnetic beads is presented. Different coupling strategies for the modification of the magnetic beads with the specific anti-atrazine antibody have been developed. The immunological reaction for the detection of atrazine performed on the magnetic bead is based on a direct competitive assay using a peroxidase (HRP) tracer as the enzymatic label. After the immunochemical reactions, the modified magnetic beads can be easily captured by a magnetosensor made of graphite-epoxy composite, which is also used as the transducer for the electrochemical immunosensing. The electrochemical detection is thus achieved through a suitable substrate and mediator for the enzyme HRP. The electrochemical approach is also compared with a novel magneto-ELISA based on optical detection. The performance of the electrochemical immunosensing strategy based on magnetic beads was successfully evaluated using spiked real orange juice samples. The detection limit for atrazine using the competitive electrochemical magnetoimmunosensing strategy with anti-atrazine-specific antibody covalent coupled with tosyl-activated magnetic beads was found to be 6 × 10-3 μg L-1 (0.027 nmol L-1). This strategy offers great promise for rapid, simple, cost-effective, and on-site analysis of biological, food, and environmental samples. © 2006 American Chemical Society.

Topics
  • impedance spectroscopy
  • composite