People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Schiøtz, Jakob
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (32/32 displayed)
- 2024Interpretability of high-resolution transmission electron microscopy imagescitations
- 2024Interpretability of high-resolution transmission electron microscopy imagescitations
- 2024Beam induced heating in electron microscopy modeled with machine learning interatomic potentialscitations
- 2023Quantifying noise limitations of neural network segmentations in high-resolution transmission electron microscopycitations
- 2023Quantifying noise limitations of neural network segmentations in high-resolution transmission electron microscopycitations
- 2023Reconstructing the exit wave of 2D materials in high-resolution transmission electron microscopy using machine learningcitations
- 2023Reconstructing the exit wave of 2D materials in high-resolution transmission electron microscopy using machine learningcitations
- 2022Machine-Learning Assisted Exit-wave Reconstruction for Quantitative Feature Extraction
- 2021Reconstructing the exit wave in high-resolution transmission electron microscopy using machine learningcitations
- 2021Electron beam effects in high-resolution transmission electron microscopy investigations of catalytic nanoparticles
- 2021Initiation and Progression of Anisotropic Galvanic Replacement Reactions in a Single Ag Nanowire:Implications for Nanostructure Synthesiscitations
- 2021Initiation and Progression of Anisotropic Galvanic Replacement Reactions in a Single Ag Nanowirecitations
- 2020In Situ Study of the Motion of Supported Gold Nanoparticles
- 2017Accuracy of surface strain measurements from transmission electron microscopy images of nanoparticlescitations
- 2017New Platinum Alloy Catalysts for Oxygen Electroreduction Based on Alkaline Earth Metalscitations
- 2017New Platinum Alloy Catalysts for Oxygen Electroreduction Based on Alkaline Earth Metalscitations
- 2017Nanocrystalline metals: Roughness in flatlandcitations
- 2016Exploring the Lanthanide Contraction to Tune the Activity and Stability of Pt
- 2016Exploring the Lanthanide Contraction to Tune the Activity and Stability of Pt
- 2016Correlation between diffusion barriers and alloying energy in binary alloyscitations
- 2016Pt x Gd alloy formation on Pt(111): Preparation and structural characterizationcitations
- 2015Controlling the Activity and Stability of Pt-Based Electrocatalysts By Means of the Lanthanide Contraction
- 2010Computer simulations of nanoindentation in Mg-Cu and Cu-Zr metallic glassescitations
- 2010Computer simulations of nanoindentation in Mg-Cu and Cu-Zr metallic glassescitations
- 2007Simulations of boundary migration during recrystallization using molecular dynamicscitations
- 2007Simulations of boundary migration during recrystallization using molecular dynamicscitations
- 2007An interatomic potential for studying CuZr bulk metallic glassescitations
- 2006Atomistic simulation study of the shear-band deformation mechanism in Mg-Cu metallic glassescitations
- 2004Simulation of Cu-Mg metallic glass: Thermodynamics and structurecitations
- 2004Atomistic simulations of Mg-Cu metallic glasses: Mechanical propertiescitations
- 2004Simulations of intergranular fracture in nanocrystalline molybdenumcitations
- 2003A maximum in the strength of nanocrystalline copper
Places of action
Organizations | Location | People |
---|
document
Electron beam effects in high-resolution transmission electron microscopy investigations of catalytic nanoparticles
Abstract
High-resolution transmission electron microscopy (HRTEM) is a powerful tool for atomic scale investigations of catalytic nanoparticles. The dynamics of such catalytic nanoparticles are highly dependent on the environment: temperature, reactant gases and reactor pressure. It is possible to imitate such conditions in a transmission electron microscope (TEM). Electron beam effects play a substantial role in the interpretation of data produced in TEM investigations. There is a trade-off between optimal signal-to-noise ratio (SNR) and minimal beam damage. The current model system consists of gold nanoparticles supported on cerium dioxide. The aforementioned studies elucidate how the nanoparticles undergo changes with observation time and reactant gases present, and surface events as function of dose rate, respectively.