Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Silva, Juliana Martins De Souza E.

  • Google
  • 6
  • 30
  • 101

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (6/6 displayed)

  • 2024Polymeric Fibers with High Strength and High Toughness at Extreme Temperatures7citations
  • 2023Electromechanical and electrochemical properties of highly filled Titanium composites for PEM bipolar plates3citations
  • 2022Mapping the elemental and crystalline phase distribution in Cu2+ doped 45S5 bioactive glass upon crystallization3citations
  • 2021Crystallization study of sol–gel derived 13-93 bioactive glass powder24citations
  • 2020New insights into the crystallization process of sol‐gel–derived 45S5 bioactive glass39citations
  • 2020Multiscale Tomographic Analysis for Micron-Sized Particulate Samples25citations

Places of action

Chart of shared publication
Agarwal, Seema
1 / 7 shared
Cheng, Chuyun
1 / 1 shared
Wei, Feng
1 / 1 shared
Carlos, Dias
1 / 1 shared
Conceição, Andre L. C.
1 / 2 shared
Greiner, Andreas
1 / 10 shared
Hou, Haoqing
1 / 1 shared
Münchgesang, Wolfram
1 / 6 shared
Wehrspohn, Ralf B.
1 / 6 shared
Gaudig, Maria
1 / 2 shared
Hickmann, Thorsten
1 / 4 shared
Pascher, Fabian
1 / 2 shared
Berthold, Lutz
2 / 4 shared
Hurle, Katrin
3 / 13 shared
Boccaccini, Ar
3 / 302 shared
Pablos-Martín, Araceli De
2 / 3 shared
De Pablos Martin, Araceli
1 / 2 shared
Nawaz, Qaisar
3 / 25 shared
Jaimes, Altair T. Contreras
2 / 5 shared
Brauer, Delia S.
2 / 23 shared
Sitarz, Maciej
1 / 12 shared
Pablosmartín, Araceli De
1 / 1 shared
Ditscherlein, Ralf
1 / 4 shared
Leißner, Thomas
1 / 5 shared
Furat, Orkun
1 / 10 shared
Peuker, Urs A.
1 / 2 shared
Sygusch, Johanna
1 / 2 shared
Langlard, Mathieu De
1 / 1 shared
Schmidt, Volker
1 / 32 shared
Rudolph, Martin
1 / 8 shared
Chart of publication period
2024
2023
2022
2021
2020

Co-Authors (by relevance)

  • Agarwal, Seema
  • Cheng, Chuyun
  • Wei, Feng
  • Carlos, Dias
  • Conceição, Andre L. C.
  • Greiner, Andreas
  • Hou, Haoqing
  • Münchgesang, Wolfram
  • Wehrspohn, Ralf B.
  • Gaudig, Maria
  • Hickmann, Thorsten
  • Pascher, Fabian
  • Berthold, Lutz
  • Hurle, Katrin
  • Boccaccini, Ar
  • Pablos-Martín, Araceli De
  • De Pablos Martin, Araceli
  • Nawaz, Qaisar
  • Jaimes, Altair T. Contreras
  • Brauer, Delia S.
  • Sitarz, Maciej
  • Pablosmartín, Araceli De
  • Ditscherlein, Ralf
  • Leißner, Thomas
  • Furat, Orkun
  • Peuker, Urs A.
  • Sygusch, Johanna
  • Langlard, Mathieu De
  • Schmidt, Volker
  • Rudolph, Martin
OrganizationsLocationPeople

article

Multiscale Tomographic Analysis for Micron-Sized Particulate Samples

  • Ditscherlein, Ralf
  • Leißner, Thomas
  • Furat, Orkun
  • Peuker, Urs A.
  • Sygusch, Johanna
  • Silva, Juliana Martins De Souza E.
  • Langlard, Mathieu De
  • Schmidt, Volker
  • Rudolph, Martin
Abstract

<jats:p>The three-dimensional characterization of distributed particle properties in the micro- and nanometer range is essential to describe and understand highly specific separation processes in terms of selectivity and yield. Both performance measures play a decisive role in the development and improvement of modern functional materials. In this study, we mixed spherical glass particles (0.4–5.8<jats:italic>μ</jats:italic>m diameter) with glass fibers (diameter 10<jats:italic>μ</jats:italic>m, length 18–660<jats:italic>μ</jats:italic>m) to investigate a borderline case of maximum difference in the aspect ratio and a significant difference in the characteristic length to characterize the system over several size scales. We immobilized the particles within a wax matrix and created sample volumes suitable for computed tomographic (CT) measurements at two different magnification scales (X-ray micro- and nano-CT). Fiber diameter and length could be described well on the basis of the low-resolution micro-CT measurements on the entire sample volume. In contrast, the spherical particle system could only be described with sufficient accuracy by combining micro-CT with high-resolution nano-CT measurements on subvolumes of reduced sample size. We modeled the joint (bivariate) distribution of fiber length and diameter with a parametric copula as a basic example, which is equally suitable for more complex distributions of irregularly shaped particles. This enables us to capture the multidimensional correlation structure of particle systems with statistically representative quantities.</jats:p>

Topics
  • impedance spectroscopy
  • glass
  • glass