Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Gain, Sarah

  • Google
  • 6
  • 13
  • 93

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (6/6 displayed)

  • 2021Cr2O3 in corundum12citations
  • 2020Kishonite, VH2, and Oreillyite, Cr2N, two new minerals from the corundum xenocrysts of Mt Carmel, Northern Israel15citations
  • 2020Extreme reduction22citations
  • 2019Dellagiustaite14citations
  • 2019Chromium in Corundum: Ultra-high Contents Under Reducing Conditionscitations
  • 2018Carmeltazite, ZrAl2Ti4O11, a new mineral trapped in corundum from volcanic rocks of Mt Carmel, Northern Israel30citations

Places of action

Chart of shared publication
Toledo, Vered
4 / 4 shared
Spartà, Deborah
1 / 1 shared
Bindi, Luca
4 / 16 shared
Saunders, Martin
4 / 33 shared
Cámara, Fernando
4 / 7 shared
Cámara, F.
1 / 1 shared
Bindi, L.
1 / 6 shared
Shaw, J.
1 / 1 shared
Saunders, M.
1 / 5 shared
Toledo, V.
1 / 1 shared
Pagano, Adriana
1 / 1 shared
Pagano, Renato
1 / 1 shared
Griffin, William L.
1 / 2 shared
Chart of publication period
2021
2020
2019
2018

Co-Authors (by relevance)

  • Toledo, Vered
  • Spartà, Deborah
  • Bindi, Luca
  • Saunders, Martin
  • Cámara, Fernando
  • Cámara, F.
  • Bindi, L.
  • Shaw, J.
  • Saunders, M.
  • Toledo, V.
  • Pagano, Adriana
  • Pagano, Renato
  • Griffin, William L.
OrganizationsLocationPeople

article

Chromium in Corundum: Ultra-high Contents Under Reducing Conditions

  • Toledo, Vered
  • Griffin, William L.
  • Gain, Sarah
  • Saunders, Martin
Abstract

An exploration project run by Shefa Yamim (A. T. M.) Ltd has recovered a variety of gemstone minerals from Cretaceous pyroclastic vents and associated alluvial deposits at Mt Carmel, Israel [1]. Among these are several types of corundum (Al2O3), including rubies with <2 wt% Cr2O3 and sapphires in a variety of colours from yellows through to greens, blues and purples, with a range of chemical impurities e.g. Ti, Fe, V, Ga. The most scientifically interesting type of corundum is the inclusion-rich ‘Carmel SapphireTM’, which contains a variety of mineral phases; some of these have only been seen in meteorites previously, e.g. tistarite (Ti2O3) [2], and others have not previously been described, e.g. carmeltazite (ZrAl2Ti4O11) [3]. These minerals indicate very low oxygen fugacities, at least 7 log units below the Iron-Wustite buffer (DIW-7), and are interpreted as reflecting the presence of CH4+H2-rich fluids [1,4]. These discoveries have led to a new understanding of fluid transfer and redox conditions in the crust and mantle. Here we describe another variety of Cr-rich corundum (Fig. 1) with Cr concentrations up to 32 wt.% Cr2O3, representing a composition in the solid solution series between corundum and eskolaite (Cr2O3), and considerably more Cr-rich than previously known examples. These crystals are a deep purple (Fig. 1), but while purple in corundum usually is due to a combination of Ti and Cr, in this case the crystals are Ti-free and contain much higher concentrations of Cr. The cores of the crystals have relatively low Cr concentrations (1-2 wt.% Cr2O3) and the Cr concentration increases towards the rim. In the highest-Cr areas, the material consists of subgrains with small but distinct variations in Cr content (Fig. 1a, 2). On the surface of the illustrated crystal there are abundant balls (<10µm to 100’s of µm) of native Cr; Transmission Electron Microscopy (TEM) studies show that these are associated with chromium nitride CrN (carlsbergite; Fig. 2), otherwise known only from iron meteorites. Electron Energy Loss Spectroscopy (EELS) analyses show that the valence of the Cr changes from Cr3+ in the corundum (both low-Cr and high-Cr types) to Cr2+ in the carlsbergite and finally Cr0 in the chromium metal. The coexistence of all three valence states suggests that the oxygen fugacity was constrained by the CrO/Cr buffer, and that Cr was undergoing a crystallographically-controlled disproportionation, Cr2+ à Cr3+ + Cr0 The oxygen fugacity implied by this reaction lies at ca DIW-5, less reducing than the conditions inferred from the Ti3+-bearing, but Cr-free, assemblages in the Carmel Sapphire. These unusual high-Cr rubies thus appear to represent an earlier stage in the crystallization of the Mt Carmel magmas.

Topics
  • impedance spectroscopy
  • mineral
  • surface
  • chromium
  • inclusion
  • phase
  • Oxygen
  • laser emission spectroscopy
  • nitride
  • transmission electron microscopy
  • iron
  • crystallization
  • electron energy loss spectroscopy