People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Shirzadi, Amir A.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (21/21 displayed)
- 2020Diffusion bonding of TiC or TiB reinforced Ti–6Al–4V matrix composites to conventional Ti–6Al–4V alloycitations
- 2019Development of Auto Ejection Melt Spinning (AEMS) and its application in fabrication of cobalt-based ribbonscitations
- 2019Layered Structures of Ti-6Al-4V Alloy and Metal Matrix Composites on Its Base Joint by Diffusion Bonding and Friction Weldingcitations
- 2019Modelling and design of new stainless-steel welding alloys suitable for low-deformation repairs and restoration processescitations
- 2019Mechanical Properties and Processing Techniques of Bulk Metal–Organic Framework Glassescitations
- 2019A new method for liquid-phase bonding of copper plates to aluminum nitride (AlN) substrates used in high-power modulescitations
- 2018Gallium-assisted diffusion bonding of stainless steel to titanium; microstructural evolution and bond strengthcitations
- 2016Effect of Cu addition on microstructure and impact toughness in the simulated coarse-grained heat-affected zone of high-strength low-alloy steelscitations
- 2015Microstructure and Interfacial Reactions During Vacuum Brazing of Stainless Steel to Titanium Using Ag-28 pct Cu Alloycitations
- 2015Austenite memory and variant selection in a novel martensitic welding alloycitations
- 2013Microstructure and interfacial reactions during active metal brazing of stainless steel to titaniumcitations
- 2012Effect of SiC reinforcement particles on the grain density in a magnesium-based metal-matrix composite: modelling and experimentcitations
- 2012Crystallization model of magnesium primary phase in the AZ91/SiC compositecitations
- 2011Combined effect of stress and strain on crystallographic orientation of bainite
- 2011Design of weld fillers for mitigation of residual stresses in ferritic and austenitic steel weldscitations
- 2010Neural network modelling of hot deformation of austenite
- 2010Comparison of alloying concepts for Low Transformation Temperature (LTT) welding consumables
- 2010Modelling of residual stress minimization through martensitic transformation in stainless steel welds
- 2009Stainless steel weld metal designed to mitigate residual stressescitations
- 2009Bainite orientation in plastically deformed austenitecitations
- 2008Joining ceramics to metals using metallic foamcitations
Places of action
Organizations | Location | People |
---|
article
Layered Structures of Ti-6Al-4V Alloy and Metal Matrix Composites on Its Base Joint by Diffusion Bonding and Friction Welding
Abstract
Metallic layered structures demonstrate an advanced set of characteristics that combine different properties not found within homogenous bulk materials. Powder metallurgy (PM) is proven to be the most efficient way of fabrication of layered structures, including highly rated structures of Ti alloys. Residual porosity, however, remains one of the biggest problems of titanium-based PM products and this can adversely affect the mechanical properties and performance of the structural parts. Post-sintering hot deformation is a common way to control the porosity of metallic materials. Traditional thermomechanical processing like hot rolling, however, could not be applied on multi-layered structures due to the disparity of the different layers’ plastic flow. Separate processing of high performance individual layers to reach their best parameters, followed by post processing bonding of the mating subcomponents is a credible pathway for fabrication of the layered materials with highly optimized properties of each individual layer. In this study we used diffusion bonding (DB) and friction welding to join the parts made of Ti-6Al-4V alloy and metal matrix composites on the base of this alloy reinforced with 10% of either TiB or TiC. Parts were fabricated using blended elemental PM. Different protocols were used to join the materials: DB welding via rotational friction (RFW) and linear friction (LFW) as well as different geometries of mating subcomponents were tested. Structure characterization of the joints using light optical microscopy, SEM, EDS, EBSD as well as mechanical tests were performed. All used protocols were generally successful in bonding the parts made of Ti-64 alloy and composites on its base. The potential of DB, RFW and LFW of Ti-6Al-4V alloy and its MMC are discussed.