People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kashyap, Isha
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
Lorentz Transmission Electron Microscopy Image Simulations of Experimental Nano-Chessboard Observations in Co-Pt Alloys
Abstract
<jats:title>Abstract</jats:title><jats:p>The magnetization configuration of a novel nano-chessboard structure consisting of L1<jats:sub>0</jats:sub>and L1<jats:sub>2</jats:sub>phases in a Co<jats:sub>40</jats:sub>Pt<jats:sub>60</jats:sub>alloy is investigated using Lorentz transmission electron microscopy (LTEM) and micro-magnetic simulations. We show high-resolution LTEM images of nano-size magnetic features acquired through spherical aberration correction in Lorentz Fresnel mode. Phase reconstructions and LTEM image simulations are carried out to fully understand the magnetic microstructure. The experimental Fresnel images of the nano-chessboard structure show zig-zag shaped magnetic domain walls at the inter-phase boundaries between L1<jats:sub>0</jats:sub>and L1<jats:sub>2</jats:sub>phases. A circular magnetization distribution with vortex and anti-vortex type arrangement is evident in the phase reconstructed magnetic induction maps as well as simulated maps. The magnetic contrast in experimental LTEM images is interpreted with the help of magnetic induction maps simulated for various relative electron beam-sample orientations inside the TEM.</jats:p>