People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Larsen, Rasmus
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2015Dictionary Based Segmentation in Volumescitations
- 2014Surface Detection using Round Cutcitations
- 2014Pattern recognition approach to quantify the atomic structure of graphenecitations
- 2014Structure Identification in High-Resolution Transmission Electron Microscopic Imagescitations
- 2014Quantification Tools for Analyzing Tomograms of Energy Materials
- 2013Automated Structure Detection in HRTEM Images: An Example with Graphene
- 2013Quantitative Analysis of Micro-Structure in Meat Emulsions from Grating-Based Multimodal X-Ray Tomography
- 2012Large scale tracking of stem cells using sparse coding and coupled graphs
- 2010Quantitative data analysis methods for 3D microstructure characterization of Solid Oxide Cells
- 2002Building and Testing a Statistical Shape Model of the Human Ear Canal
- 2002Testing for Gender Related Size and Shape Differences of the Human Ear canal using Statistical methods
Places of action
Organizations | Location | People |
---|
article
Structure Identification in High-Resolution Transmission Electron Microscopic Images
Abstract
A connection between microscopic structure and macroscopic properties is expected for almost all material systems. High-resolution transmission electron microscopy is a technique offering insight into the atomic structure, but the analysis of large image series can be time consuming. The present work describes a method to automatically estimate the atomic structure in two-dimensional materials. As an example graphene is chosen, in which the positions of the carbon atoms are reconstructed. Lattice parameters are extracted in the frequency domain and an initial atom positioning is estimated. Next, a plausible neighborhood structure is estimated. Finally, atom positions are adjusted by simulation of a Markov random field model, integrating image evidence and the strong geometric prior. A pristine sample with high regularity and a sample with an induced hole are analyzed. False discovery rate-controlled large-scale simultaneous hypothesis testing is used as a statistical framework for interpretation of results. The first sample yields, as expected, a homogeneous distribution of carbon–carbon (C–C) bond lengths. The second sample exhibits regions of shorter C–C bond lengths with a preferred orientation, suggesting either strain in the structure or a buckling of the graphene sheet. The precision of the method is demonstrated on simulated model structures and by its application to multiple exposures of the two graphene samples.