People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Damsgaard, Christian Danvad
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (28/28 displayed)
- 2024Using CoCu2Ga/SiO2 to identify stability-issues in ethanol-selective Co-Cu alloyed catalysts in carbon monoxide hydrogenationcitations
- 2024Using CoCu 2 Ga/SiO 2 to identify stability-issues in ethanol-selective Co-Cu alloyed catalysts in carbon monoxide hydrogenationcitations
- 2024Using CoCu$_2$Ga/SiO$_2$ to identify stability-issues in ethanol-selective Co-Cu alloyed catalysts in carbon monoxide hydrogenation
- 2024Stable mass-selected AuTiOx nanoparticles for CO oxidationcitations
- 2024Stable mass-selected AuTiO x nanoparticles for CO oxidationcitations
- 2023Ni 5-x Ga 3+x Catalyst for Selective CO 2 Hydrogenation to MeOH :Investigating the Activity at Ambient Pressure and Low Temperature with Microreactors
- 2023Ni5-xGa3+x Catalyst for Selective CO2 Hydrogenation to MeOH
- 2022Reversible Atomization and Nano-Clustering of Pt as a Strategy for Designing Ultra-Low-Metal-Loading Catalystscitations
- 2021Characterization of oxide-supported Cu by infrared measurements on adsorbed COcitations
- 2020Reduction and carburization of iron oxides for Fischer–Tropsch synthesiscitations
- 2019Evolution of intermetallic GaPd2/SiO2 catalyst and optimization for methanol synthesis at ambient pressurecitations
- 2018Scalable Synthesis of Carbon-Supported Platinum–Lanthanide and −Rare-Earth Alloys for Oxygen Reductioncitations
- 2016Influence of gas atmospheres and ceria on the stability of nanoporous gold studied by environmental electron microscopy and in situ ptychographycitations
- 2015Intermetallic GaPd2 Nanoparticles on SiO2 for Low-Pressure CO2 Hydrogenation to Methanolcitations
- 2015Intermetallic GaPd 2 Nanoparticles on SiO 2 for Low-Pressure CO 2 Hydrogenation to Methanol:Catalytic Performance and In Situ Characterizationcitations
- 2014In situ ETEM synthesis of NiGa alloy nanoparticles from nitrate salt solutioncitations
- 2014In situ observation of Cu-Ni alloy nanoparticle formation by X-ray diffraction, X-ray absorption spectroscopy, and transmission electron microscopy: Influence of Cu/Ni ratiocitations
- 2014Intermetallic compounds of Ni and Ga as catalysts for the synthesis of methanolcitations
- 2014Intermetallic compounds of Ni and Ga as catalysts for the synthesis of methanolcitations
- 2014Electron microscopy study of the deactivation of nickel based catalysts for bio oil hydrodeoxygenation
- 2013Optical coupling in the ETEM
- 2012Origin of low temperature deactivation of Ni5Ga3 nanoparticles as catalyst for methanol synthesis
- 2011In situ environmental transmission electron microscope investigation of NiGa nanoparticle synthesis
- 2009Interfacial, electrical, and spin-injection properties of epitaxial Co2MnGa grown on GaAs(100)citations
- 2008Hybrid Spintronic Structures With Magnetic Oxides and Heusler Alloyscitations
- 2006Spin injection from epitaxial Heusler alloy thin films into InGaAs/GaAs quantum wells
- 2005Fe-contacts on InAs(100) and InP(100) characterised by conversion electron Mössbauer spectroscopycitations
- 2005Spin injection between epitaxial Co2.4Mn1.6Ga and an InGaAs quantum wellcitations
Places of action
Organizations | Location | People |
---|
document
Electron microscopy study of the deactivation of nickel based catalysts for bio oil hydrodeoxygenation
Abstract
Hydrodeoxygenation (HDO) is proposed as an efficient way to remove oxygen in bio-oil, improving its quality as a more sustainable alternative to conventional fuels in terms of CO2 neutrality and relative short production cycle [1].<br/>Ni and Ni-MoS2 nanoparticles supported on ZrO2 show potential as high-pressure (100 bar) catalysts for purification of bio-oil by HDO. However, the catalysts deactivate in presence of sulfur, chlorine and potassium species, which are all naturally occurring in real bio-oil.<br/>The deactivation mechanisms of the Ni/ZrO2 have been investigated through scanning transmission electron microscopy (STEM), energy dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM) and X-ray diffraction (XRD). Catalytic testing has been performed using guaiacol in 1-octanol acting as a model compound for bio-oil.<br/>Addition of sulphur (0.3 vol% octanethiol) in the feed resulted in permanent deactivation of the catalyst by formation of a catalytically inactive Ni-S phase, as suggested by the very similar spatial distribution of nickel and sulphur signals in STEM-EDX elemental maps (Figure 1) and confirmed by XRD and X-ray absorption spectroscopy (XAS) techniques.<br/>Deactivation by chlorine (0.3 vol% chlorooctane) co-feeding was found to be reversible, as the catalyst could regain close to its initial deoxygenation activity upon restoration of a clean feed. SEM-EDX investigations excluded the presence of chlorine species; however, XRD analysis revealed sintering of nickel nanoparticles (Figure 2).<br/>Impregnating KCl and KNO3 on two different batches of catalysts decreased permanently their deoxygenation activity, suggesting the adsorption of potassium at low coordinated nickel sites [2]. The high mobility of potassium under the electron beam [3] prevented the spatial distribution study of this element through STEM-EDX. Moreover, nickel sintering was observed in the KCl poisoned sample and was ascribed once again to the formation of mobile Ni-Cl species upon reaction of HCl with surface oxides [4].<br/>Furthermore, environmental transmission electron microscopy (ETEM) has been used in order to investigate the oxidation of Ni-MoS2/ZrO2 catalyst active phase as a function of different HDO reaction conditions and using methanol as a model molecule for bio-oil.