Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Wu, Siqi

  • Google
  • 2
  • 11
  • 6

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2024Viscoelastic materials are most energy efficient when loaded and unloaded at equal rates.citations
  • 2023Prospective spatial-temporal clusters of COVID-19 in local communities: case study of Kansas City, Missouri, United States6citations

Places of action

Chart of shared publication
Tsai, L.
1 / 1 shared
Daley, Monica A.
1 / 1 shared
Navarro, P.
1 / 1 shared
Levinson, T.
1 / 3 shared
Janneke Schwaner, M.
1 / 1 shared
Mendoza, E.
1 / 5 shared
Azizi, E.
1 / 1 shared
Ilton, Mark
1 / 1 shared
Francisco, Alex
1 / 1 shared
Balakumar, Sindhu
1 / 1 shared
Alqadi, Hadeel
1 / 1 shared
Chart of publication period
2024
2023

Co-Authors (by relevance)

  • Tsai, L.
  • Daley, Monica A.
  • Navarro, P.
  • Levinson, T.
  • Janneke Schwaner, M.
  • Mendoza, E.
  • Azizi, E.
  • Ilton, Mark
  • Francisco, Alex
  • Balakumar, Sindhu
  • Alqadi, Hadeel
OrganizationsLocationPeople

article

Prospective spatial-temporal clusters of COVID-19 in local communities: case study of Kansas City, Missouri, United States

  • Francisco, Alex
  • Balakumar, Sindhu
  • Wu, Siqi
  • Alqadi, Hadeel
Abstract

<jats:title>Abstract</jats:title><jats:p>Kansas City, Missouri, became one of the major United States hotspots for COVID-19 due to an increase in the rate of positive COVID-19 test results. Despite the large numbers of positive cases in Kansas City, MO, the spatial-temporal analysis of data has been less investigated. However, it is critical to detect emerging clusters of COVID-19 and enforce control and preventive policies within those clusters. We conducted a prospective Poisson spatial-temporal analysis of Kansas City, MO data to detect significant space-time clusters of COVID-19 positive cases at the zip code level in Kansas City, MO. The analysis focused on daily infected cases in four equal periods of 3 months. We detected temporal patterns of emerging and re-emerging space-time clusters between March 2020 and February 2021. Three statistically significant clusters emerged in the first period, mainly concentrated in downtown. It increased to seven clusters in the second period, spreading across a broader region in downtown and north of Kansas City. In the third period, nine clusters covered large areas of north and downtown Kansas City, MO. Ten clusters were present in the last period, further extending the infection along the State Line Road. The statistical results were communicated with local health officials and provided the necessary guidance for decision-making and allocating resources (e.g., vaccines and testing sites). As more data become available, statistical clustering can be used as a COVID-19 surveillance tool to measure the effects of vaccination.</jats:p>

Topics
  • impedance spectroscopy
  • cluster
  • laser emission spectroscopy
  • clustering