Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Takahashi, Keisuke

  • Google
  • 3
  • 5
  • 22

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2017Structural, Electronic and Transport Properties of Hybrid SrTiO3-Graphene and Carbon Nanoribbon Interfaces15citations
  • 2015Using exploratory factor analysis to examine consecutive in-situ X-ray diffraction measurements7citations
  • 2014Effects of mixing and pumping energy on technological and microstructural properties of cement-based mortarscitations

Places of action

Chart of shared publication
Parker, Stephen C.
1 / 33 shared
Baran, Jakub
1 / 4 shared
Eames, Christopher
1 / 5 shared
Molinari, Marco
1 / 17 shared
Islam, Saiful
1 / 10 shared
Chart of publication period
2017
2015
2014

Co-Authors (by relevance)

  • Parker, Stephen C.
  • Baran, Jakub
  • Eames, Christopher
  • Molinari, Marco
  • Islam, Saiful
OrganizationsLocationPeople

article

Using exploratory factor analysis to examine consecutive in-situ X-ray diffraction measurements

  • Takahashi, Keisuke
Abstract

<jats:p>A method is presented to examine consecutive <jats:italic>in-situ</jats:italic> X-ray diffraction (XRD) diffractograms using exploratory factor analysis. Systematic changes in the diffractograms are described numerically by score values that could be used to correlate diffraction data with other non-stationary sample properties. Phase and structure evolution in a reacting material can be studied by <jats:italic>in-situ</jats:italic> XRD. The consecutively collected data can be considered a time series of datasets. Time series are non-stationary data. Such non-stationary data are often hard to examine fully by conventional evaluation methods including applications of the Rietveld method. Here a method is presented to avoid shortcomings of conventional evaluation methods. The new method helps to identify and describe significant systematic changes in <jats:italic>in-situ</jats:italic> XRD datasets by numerical values. These systematic changes can represent structural changes as well as changes in phase composition. The method can be used to describe the development of the complex processes of compositional and structural changes. The method is demonstrated using the example of a hydrating Portland cement mortar. This hydration process involves at least 11 phases including non-crystalline phases. In the presented example factor analysis of <jats:italic>in-situ</jats:italic> XRD data results in three variables (factors) describing the observed changes numerically.</jats:p>

Topics
  • impedance spectroscopy
  • x-ray diffraction
  • crystalline phase
  • cement