Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Tolkachev, Mikhail S.

  • Google
  • 1
  • 5
  • 3

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Helical magnetic mirror performance at up- and downstream directions of the axial force3citations

Places of action

Chart of shared publication
Inzhevatkina, Anna
1 / 1 shared
Ivanov, Ivan
1 / 7 shared
Sklyarov, Vladislav F.
1 / 1 shared
Larichkin, Mikhail V.
1 / 1 shared
Ustyuzhanin, Viktor O.
1 / 1 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Inzhevatkina, Anna
  • Ivanov, Ivan
  • Sklyarov, Vladislav F.
  • Larichkin, Mikhail V.
  • Ustyuzhanin, Viktor O.
OrganizationsLocationPeople

article

Helical magnetic mirror performance at up- and downstream directions of the axial force

  • Inzhevatkina, Anna
  • Tolkachev, Mikhail S.
  • Ivanov, Ivan
  • Sklyarov, Vladislav F.
  • Larichkin, Mikhail V.
  • Ustyuzhanin, Viktor O.
Abstract

<jats:p>The paper presents experimental results from the SMOLA device on the testing of the helical mirror confinement hypothesis. Helical mirror confinement is the technique of an active control of axial plasma losses from a confinement zone by multiple magnetic mirrors that move along the axis in the reference frame of the plasma that experiences <jats:inline-formula><jats:alternatives><jats:tex-math>${E}{B}$</jats:tex-math><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0022377822001167_inline1.png" /></jats:alternatives></jats:inline-formula> rotation due to an applied radial electric field. Theory predicts that a helical mirror will provide an axial force that modifies the plasma flow and, simultaneously, density pinching to the axis. The force direction depends on the plasma rotation direction. Experimental data on the axial plasma losses at different direction of the magnetic mirror movement are presented. If the trapped ions move in the direction opposite to the direction of the axial losses, then the particle flux reduces in the broad range of the plasma density. The confinement improves with the increase of the fraction of the trapped particles (effective mirror ratio was up to <jats:inline-formula><jats:alternatives><jats:tex-math>$R_{{ eff}}=5.8 1.4$</jats:tex-math><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0022377822001167_inline2.png" /></jats:alternatives></jats:inline-formula>). If the trapped ions move in the same direction as the axial losses, then the flux depends on density. At intermediate densities, the integral flux through the transport section rises compared to the plasma flowing through the straight magnetic field. The effective mirror ratio is lower and does not significantly depend on the fraction of the trapped particles (effective mirror ratio at intermediate density was <jats:inline-formula><jats:alternatives><jats:tex-math>$R_{{ eff}}=3.3 0.8$</jats:tex-math><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0022377822001167_inline3.png" /></jats:alternatives></jats:inline-formula>).</jats:p>

Topics
  • density
  • impedance spectroscopy
  • theory