Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ivanov, Ivan

  • Google
  • 7
  • 50
  • 27

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (7/7 displayed)

  • 2024Enzymatically built nanoenabled antimicrobial coating on urinary catheters2citations
  • 2024Antimicrobial and antifouling hyaluronic acid-cobalt nanogel coatings built sonochemically on contact lensescitations
  • 2024Mussel-Inspired Sonochemical Nanocomposite Coating on Catheters for Prevention of Urinary Infections2citations
  • 2024Thermo-mechanical-chemical properties of unirradiated and irradiated samples of spent nuclear fuel rod segments and claddingcitations
  • 2023The influence of carbon on polytype and growth stability of epitaxial hexagonal boron nitride films and layers1citations
  • 2022Helical magnetic mirror performance at up- and downstream directions of the axial force3citations
  • 2016Ensemble Structure of the Highly Flexible Complex Formed between Vesicular Stomatitis Virus Unassembled Nucleoprotein and its Phosphoprotein Chaperone.19citations

Places of action

Chart of shared publication
Puertas Segura, Antonio Jesús
1 / 2 shared
Dimitrov, Petar
2 / 2 shared
Ciardeli, Gianluca
1 / 1 shared
Morena Gatius, Ángela Gala
1 / 2 shared
Tzanov, Tzanko
3 / 7 shared
Todorova, Katerina
2 / 2 shared
Ivanova, Kristina Dimitrova
1 / 1 shared
Pérez Rafael, Silvia
2 / 3 shared
Torrent Burgués, Juan
1 / 1 shared
Ferreres Cabanes, Guillem
1 / 3 shared
Guaus Guerrero, Ester
1 / 1 shared
Palacios Bonilla, Òscar
1 / 1 shared
Ivanova, Kristina
1 / 2 shared
Ciardelli, Gianluca
1 / 11 shared
Ivanova, Aleksandra
1 / 1 shared
Puertas-Segura, Antonio
1 / 1 shared
Bertsch, Johannes
1 / 6 shared
Aguado, Carlos
1 / 1 shared
Ruiz-Hervias, Jesus
1 / 1 shared
Király, Márton
1 / 1 shared
Feria Marquez, Francisco
1 / 1 shared
Cristóbal Beneyto, Miguel
1 / 1 shared
Vlassopoulos, Efstathios
1 / 1 shared
Zencker, Uwe
1 / 8 shared
Nasyrow, Ramil
1 / 1 shared
Papaioannou, Dimitrios
1 / 1 shared
Herranz, Luis Enrique
1 / 1 shared
Arkoma, Asko
1 / 1 shared
Pedersen, Henrik
1 / 42 shared
Persson, Per
1 / 16 shared
Palisaitis, Justinas
1 / 41 shared
Sharma, Sachin
1 / 6 shared
Högberg, Hans
1 / 37 shared
Inzhevatkina, Anna
1 / 1 shared
Tolkachev, Mikhail S.
1 / 1 shared
Sklyarov, Vladislav F.
1 / 1 shared
Larichkin, Mikhail V.
1 / 1 shared
Ustyuzhanin, Viktor O.
1 / 1 shared
Blackledge, Martin
1 / 3 shared
Communie, Guillaume
1 / 1 shared
Jamin, Marc
1 / 1 shared
Bernadó, Pau
1 / 3 shared
Bourhis, Jean-Marie
1 / 2 shared
Gérard, Francine
1 / 1 shared
Jensen, Malene Ringkjøbing
1 / 2 shared
Leyrat, Cedric
1 / 1 shared
Martinez, Nicolas
1 / 4 shared
Yabukarski, Filip
1 / 2 shared
Buisson, Marlyse
1 / 1 shared
Ribeiro, Euripedes A.
1 / 1 shared
Chart of publication period
2024
2023
2022
2016

Co-Authors (by relevance)

  • Puertas Segura, Antonio Jesús
  • Dimitrov, Petar
  • Ciardeli, Gianluca
  • Morena Gatius, Ángela Gala
  • Tzanov, Tzanko
  • Todorova, Katerina
  • Ivanova, Kristina Dimitrova
  • Pérez Rafael, Silvia
  • Torrent Burgués, Juan
  • Ferreres Cabanes, Guillem
  • Guaus Guerrero, Ester
  • Palacios Bonilla, Òscar
  • Ivanova, Kristina
  • Ciardelli, Gianluca
  • Ivanova, Aleksandra
  • Puertas-Segura, Antonio
  • Bertsch, Johannes
  • Aguado, Carlos
  • Ruiz-Hervias, Jesus
  • Király, Márton
  • Feria Marquez, Francisco
  • Cristóbal Beneyto, Miguel
  • Vlassopoulos, Efstathios
  • Zencker, Uwe
  • Nasyrow, Ramil
  • Papaioannou, Dimitrios
  • Herranz, Luis Enrique
  • Arkoma, Asko
  • Pedersen, Henrik
  • Persson, Per
  • Palisaitis, Justinas
  • Sharma, Sachin
  • Högberg, Hans
  • Inzhevatkina, Anna
  • Tolkachev, Mikhail S.
  • Sklyarov, Vladislav F.
  • Larichkin, Mikhail V.
  • Ustyuzhanin, Viktor O.
  • Blackledge, Martin
  • Communie, Guillaume
  • Jamin, Marc
  • Bernadó, Pau
  • Bourhis, Jean-Marie
  • Gérard, Francine
  • Jensen, Malene Ringkjøbing
  • Leyrat, Cedric
  • Martinez, Nicolas
  • Yabukarski, Filip
  • Buisson, Marlyse
  • Ribeiro, Euripedes A.
OrganizationsLocationPeople

article

Helical magnetic mirror performance at up- and downstream directions of the axial force

  • Inzhevatkina, Anna
  • Tolkachev, Mikhail S.
  • Ivanov, Ivan
  • Sklyarov, Vladislav F.
  • Larichkin, Mikhail V.
  • Ustyuzhanin, Viktor O.
Abstract

<jats:p>The paper presents experimental results from the SMOLA device on the testing of the helical mirror confinement hypothesis. Helical mirror confinement is the technique of an active control of axial plasma losses from a confinement zone by multiple magnetic mirrors that move along the axis in the reference frame of the plasma that experiences <jats:inline-formula><jats:alternatives><jats:tex-math>${E}{B}$</jats:tex-math><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0022377822001167_inline1.png" /></jats:alternatives></jats:inline-formula> rotation due to an applied radial electric field. Theory predicts that a helical mirror will provide an axial force that modifies the plasma flow and, simultaneously, density pinching to the axis. The force direction depends on the plasma rotation direction. Experimental data on the axial plasma losses at different direction of the magnetic mirror movement are presented. If the trapped ions move in the direction opposite to the direction of the axial losses, then the particle flux reduces in the broad range of the plasma density. The confinement improves with the increase of the fraction of the trapped particles (effective mirror ratio was up to <jats:inline-formula><jats:alternatives><jats:tex-math>$R_{{ eff}}=5.8 1.4$</jats:tex-math><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0022377822001167_inline2.png" /></jats:alternatives></jats:inline-formula>). If the trapped ions move in the same direction as the axial losses, then the flux depends on density. At intermediate densities, the integral flux through the transport section rises compared to the plasma flowing through the straight magnetic field. The effective mirror ratio is lower and does not significantly depend on the fraction of the trapped particles (effective mirror ratio at intermediate density was <jats:inline-formula><jats:alternatives><jats:tex-math>$R_{{ eff}}=3.3 0.8$</jats:tex-math><jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" mime-subtype="png" xlink:href="S0022377822001167_inline3.png" /></jats:alternatives></jats:inline-formula>).</jats:p>

Topics
  • density
  • impedance spectroscopy
  • theory