Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Vandre, Eric

  • Google
  • 1
  • 3
  • 24

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2016Dynamic wetting failure and hydrodynamic assist in curtain coating24citations

Places of action

Chart of shared publication
Carvalho, Marcio S.
1 / 2 shared
Kumar, Satish
1 / 21 shared
Liu, Chen Yu
1 / 2 shared
Chart of publication period
2016

Co-Authors (by relevance)

  • Carvalho, Marcio S.
  • Kumar, Satish
  • Liu, Chen Yu
OrganizationsLocationPeople

article

Dynamic wetting failure and hydrodynamic assist in curtain coating

  • Carvalho, Marcio S.
  • Kumar, Satish
  • Liu, Chen Yu
  • Vandre, Eric
Abstract

<p>Dynamic wetting failure in curtain coating of Newtonian liquids is studied in this work. A hydrodynamic model accounting for air flow near the dynamic contact line (DCL) is developed to describe two-dimensional (2D) steady wetting and to predict the onset of wetting failure. A hybrid approach is used where air is described by a one-dimensional model and liquid by a 2D model, and the resulting hybrid formulation is solved with the Galerkin finite element method. The results reveal that the delay of wetting failure in curtain coating - often termed hydrodynamic assist - mainly arises from the hydrodynamic pressure generated by the inertia of the impinging curtain. This pressure leads to a strong capillary-stress gradient that pumps air away from the DCL and thus increases the critical substrate speed for wetting failure. Although the parameter values used in the model are different from those in experiments due to computational limitations, the model is able to capture the experimentally observed non-monotonic behaviour of the critical substrate speed as the feed flow rate increases (Blake et al., Phys. Fluids, vol. 11, 1999, p. 1995-2007). The influence of insoluble surfactants is also investigated, and the results show that Marangoni stresses tend to thin the air film and increase air-pressure gradients near the DCL, thereby promoting the onset of wetting failure. In addition, Marangoni stresses reduce the degree of hydrodynamic assist in curtain coating, suggesting a possible mechanism for experimental observations reported by Marston et al. (Exp. Fluids, vol. 46, 2009, pp. 549-558).</p>

Topics
  • impedance spectroscopy
  • experiment
  • two-dimensional
  • one-dimensional
  • surfactant