Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Yeom, Dong Il

  • Google
  • 3
  • 13
  • 77

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2018Low-dimensional nanomaterial saturable absorbers for ultrashort-pulsed waveguide lasers53citations
  • 2010Supercontinuum generation in chalcogenide glass waveguides1citations
  • 2007Highly nonlinear chalcogenide fibres for all-optical signal processing23citations

Places of action

Chart of shared publication
Zhang, Han
1 / 22 shared
Jiang, Xiantao
1 / 1 shared
Rotermund, Fabian
1 / 2 shared
Eggleton, B. J.
1 / 15 shared
Lamont, M. R. E.
1 / 3 shared
Pelusi, Mark D.
1 / 6 shared
Fu, Libin
1 / 5 shared
Littler, Ian C. M.
1 / 3 shared
Taeed, Vahid G.
1 / 11 shared
Mägi, Eric C.
1 / 3 shared
Eggleton, Benjamin J.
1 / 38 shared
Nguyen, Hong C.
1 / 3 shared
Lamont, Michael R. E.
1 / 8 shared
Chart of publication period
2018
2010
2007

Co-Authors (by relevance)

  • Zhang, Han
  • Jiang, Xiantao
  • Rotermund, Fabian
  • Eggleton, B. J.
  • Lamont, M. R. E.
  • Pelusi, Mark D.
  • Fu, Libin
  • Littler, Ian C. M.
  • Taeed, Vahid G.
  • Mägi, Eric C.
  • Eggleton, Benjamin J.
  • Nguyen, Hong C.
  • Lamont, Michael R. E.
OrganizationsLocationPeople

booksection

Supercontinuum generation in chalcogenide glass waveguides

  • Eggleton, B. J.
  • Lamont, M. R. E.
  • Yeom, Dong Il
Abstract

<p>Introduction Supercontinuum (SC) generation, the creation of broadband spectral components from an intense light pulse passing through a nonlinear medium, is of great theoretical interest as well as having numerous applications in optical frequency metrology, bio-imaging and spectroscopy (Dudley et al., 2006). In particular, the demonstration of efficient SC generation in a silica photonic crystal fibre (PCF) and silica fibre tapers using a Ti: Sapphire laser (Birks et al., 2000, Ranka et al., 2000) had a striking impact on this research field. The advent of this new class of waveguide, capable of engineered dispersion and strong confinement of light, facilitated research on the fundamental study of the evolution of ultra-fast pulses in highly nonlinear wave-guides, as well as the development of practical broadband light sources using the proper combination of fibres and laser pulses. Although the successful demonstration of ultra-broadband light generation often spanning more than an octave has been made in silica fibre, the small Kerr nonlinear coefficient of silica still limits its practicality. The ideal SC light source would use a compact, low power pulsed laser. This goal has motivated the study of SC generation in waveguides with higher nonlinear coefficients and lower energy thresholds or decreased device length to initiate the nonlinear process. Several approaches based on this idea have been reported utilising highly nonlinear material in a fibre geometry such as lead-silicate, bismuth and chalcogenide fibres (Brambilla et al., 2005, Leong et al., 2006, Mägi et al., 2007), and in a planar waveguide geometry including silicon (Boyraz et al., 2004), AlGaAs (Siviloglou et al., 2006) and chalcogenide waveguides (Psaila et al., 2007, Lamont et al., 2008).</p>

Topics
  • impedance spectroscopy
  • dispersion
  • glass
  • glass
  • Silicon
  • Bismuth