Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Pearce, N. R. L.

  • Google
  • 1
  • 2
  • 41

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2000Improving the resin transfer moulding process for fabric-reinforced composites by modification of the fabric architecture41citations

Places of action

Chart of shared publication
Guild, F. J.
1 / 6 shared
Summerscales, John
1 / 37 shared
Chart of publication period
2000

Co-Authors (by relevance)

  • Guild, F. J.
  • Summerscales, John
OrganizationsLocationPeople

article

Improving the resin transfer moulding process for fabric-reinforced composites by modification of the fabric architecture

  • Guild, F. J.
  • Pearce, N. R. L.
  • Summerscales, John
Abstract

The use of resin transfer moulding (RTM) as an economic and efficient means of producing high-performance fibre-reinforced composites is critically limited by the permeability of the fabrics employed. Commercial fabrics are available where the architecture of the reinforcement is designed to cluster the fibres giving higher permeabilities than conventional fabrics. This has been shown to improve processing times, but there is evidence that such clustering is detrimental to the mechanical performance of the resulting composite material.The objective of this work was to relate variations in permeability, and in the laminate mechanical properties, to differences in microstructure. A series of experimental carbon fibre fabrics woven to incorporate a novel flow enhancement concept (use of 3K tows in a 6K fabric) were used to manufacture plates by RTM in a transparent mould. The progress of the resin front was recorded to computer disc during injection, thus allowing the permeabilities of the fabrics to be calculated.The manufactured plates were subsequently sectioned for mechanical testing (moduli and strengths in tension and compression) and automated image analysis. Relationships were sought between measured permeabilities, mechanical properties and microstructures using a Qunatimet 570 automatic image analyser to determine fractal dimensions from polished sections. It has been shown that variations in the microstructures can be related to the permeability and mechanical property values obtained. Further the deterioration of mechanical properties for the novel fabrics with reduced fibre volume fractions is less than has been reported for fabrics with clustered flow-enhancing rows at constant fibre volume fraction. (C) 2000 Elsevier Science Ltd. All rights reserved.

Topics
  • impedance spectroscopy
  • cluster
  • Carbon
  • laser emission spectroscopy
  • strength
  • composite
  • permeability
  • resin
  • clustering
  • woven