People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Pei, Yutao T.
University of Groningen
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (23/23 displayed)
- 2023Fabric-like electrospun PVAc-graphene nanofiber webs as wearable and degradable piezocapacitive sensorscitations
- 2023Correlation between local mechanical properties and corresponding microstructures in a friction stir processed Monel alloycitations
- 2022Outstanding cracking resistance in Mg-alloyed zinc coatings achieved via crystallographic texture controlcitations
- 2022The effect of grain refinement on the deformation and cracking resistance in Zn–Al–Mg coatingscitations
- 2021Cracking behavior and formability of Zn-Al-Mg coatingscitations
- 2021Biomimetic Soft Polymer Microstructures and Piezoresistive Graphene MEMS Sensors using Sacrificial Metal 3D Printingcitations
- 2021Fabrication of polymeric microstructures
- 2020Effects of loading conditions on free surface roughening of AISI 420 martensitic stainless steelcitations
- 2020Genesis and mechanism of microstructural scale deformation and cracking in ZnAlMg coatingscitations
- 2019Bioinspired Cilia Sensors with Graphene Sensing Elements Fabricated Using 3D Printing and Castingcitations
- 2019Microstructure and adhesion strength quantification of PVD bi-layered ZnMg-Zn coatings on DP800 steelcitations
- 2019Micromechanical evaluation of DP1000-GI dual-phase high-strength steel resistance spot weldcitations
- 2017On the significance of running-in of hard nc-TiC/a-C:H coating for short-term repeating machiningcitations
- 2017Two phenomenological models to predict the single peak flow stress curves up to the peak during hot deformationcitations
- 2017Microstructural evolution and mechanical performance of resistance spot welded DP1000 steel with single and double pulse welding
- 2015Effect of surface reactions on steel, Al2O3 and Si3N4counterparts on their tribological performance with polytetrafluoroethylene filled compositescitations
- 2015Structural and functional properties of nanocomposite Au–WO3 coatings
- 2014Improved tribological performance of PEEK polymers by application of diamond-like carbon coatings
- 2004Microstructure and Properties of TiB/Ti-6Al-4V Coatings Produced With Laser Treatmentscitations
- 2003Microstructural features in a laser clad TiB-Ti composite coating
- 2003Interfacial adhesion of laser clad functionally graded materialscitations
- 2003The evolution of microstructure in a laser clad TiB-Ti composite coatingcitations
- 2002SiCp/Ti6Al4V functionally graded materials produced by laser melt injectioncitations
Places of action
Organizations | Location | People |
---|
article
SiCp/Ti6Al4V functionally graded materials produced by laser melt injection
Abstract
With a well-controlled laser melt injection (LMI) process, for the first time the feasibility is demonstrated to produce SiC particles (SiCp) reinforced Ti6Al4V functionally graded materials (FGMs). SiCp are injected just behind the laser beam into the extended part of the laser melt pool that is formed at relatively high beam scanning velocities. The process allows for the minimization of the decomposition reaction between SiCp and Ti6Al4V melt, and also leads to FGMs of SiCp/Ti6Al4V instead of a homogeneous composite layer on Ti6Al4V substrates. An injection model is designed based on the temperature/viscosity field of the laser pool for a deeper understanding of the mechanism of formation of the FGMs with LMI. The model is based on finite element calculations of the temperature field in the melt pool, physical considerations of the LMI process and it is supported by experimental observations. Three types of reaction layers are observed around SiCp, namely a thin monocrystalline TiC layer, a cellular polycrystalline TiC layer and a thick mixed layer of TiC with Ti5Si3. Among them, only the monocrystalline TiC layer exhibits particular orientation relationships (ORs) to the SiCp lattice, i.e. (111)TiC||(0001)SiC and TiC||SiC or (111)TiC||(101¯2)SiC and TiC||SiC. These two kinds of TiC reaction layers act as a barrier against the interfacial reaction and its swift formation during rapid cooling hinders the dissolution of SiCp in the Ti-melt.