Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Sasaki, Takeshi

  • Google
  • 2
  • 3
  • 65

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2002Preparation of Pt/TiO2 Nancomposite Films by 2-Beam Pulsed Laser Deposition17citations
  • 2001Preparation of Pt/TiO2 Nanocomposite Thin Films by Pulsed Laser Deposition and their Photoelectrochemical Behaviors48citations

Places of action

Chart of shared publication
Koshizaki, Naoto
2 / 2 shared
Beck, Kenneth M.
2 / 17 shared
Yoon, Jong-Won
1 / 1 shared
Chart of publication period
2002
2001

Co-Authors (by relevance)

  • Koshizaki, Naoto
  • Beck, Kenneth M.
  • Yoon, Jong-Won
OrganizationsLocationPeople

article

Preparation of Pt/TiO2 Nanocomposite Thin Films by Pulsed Laser Deposition and their Photoelectrochemical Behaviors

  • Sasaki, Takeshi
  • Koshizaki, Naoto
  • Beck, Kenneth M.
  • Yoon, Jong-Won
Abstract

Pt/TiO2 nanocomposite films were prepared from the sintered mixture targets of Pt and TiO2 by pulsed laser deposition. Pt/Ti atomic ratios in the deposited films are more strongly dependent on the initial content of Pt in the target than on the laser fluence. It is inferred from transmission electron microscope, X-ray photoelectron spectroscopy and X-ray diffraction analyses that as-deposited Pt/TiO2 nanocomposite films are composed of metallic Pt nanoparticles with a diameter of about 30 nm and an amorphous TiO2 matrix, which are crystallized into the dominant crystal structure of the anatase pahse after the heating at 600?C. the optical bandgap of Pt/TiO2 nanocomposite films was less than that of the pure TiO2 film and photoluminescence emission was observed between 680 and 800 nm at 24 K. some energy levels can be formed by the interface between Pt nanoparticles and TiO2, which also affect the photoelectrochemical properties of Pt/TiO2 nancomposite electrodes. The anodic photocurrents at 1.0 V of Pt/TiO2 nanocomposite electrodes were observed in the visible light range.

Topics
  • nanoparticle
  • nanocomposite
  • impedance spectroscopy
  • photoluminescence
  • amorphous
  • x-ray diffraction
  • thin film
  • x-ray photoelectron spectroscopy
  • laser emission spectroscopy
  • pulsed laser deposition