People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mohedano, Marta
Universidad Complutense de Madrid
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2024Functionalization of Plasma Electrolytic Oxidation/Sol–Gel Coatings on AZ31 with Organic Corrosion Inhibitorscitations
- 2024Screening of fluoride-free PEO coatings on cast Mg3Zn0.4Ca alloy for orthopaedic implantscitations
- 2024Degradation Rate Control Issues of PEO-Coated Wrought Mg0.5Zn0.2Ca Alloy
- 2022Combination of Electron Beam Surface Structuring and Plasma Electrolytic Oxidation for Advanced Surface Modification of Ti6Al4V Alloycitations
- 2022Energy consumption, wear and corrosion of PEO coatings on preanodized Al alloy: the influence of current and frequencycitations
- 2020Effect of Heat Treatment on the Corrosion Behavior of Mg-10Gd Alloy in 0.5% NaCl Solutioncitations
- 2020Calcium Doped Flash-PEO Coatings for Corrosion Protection of Mg Alloycitations
- 2019Degradation Behaviour of Mg0.6Ca and Mg0.6Ca2Ag Alloys with Bioactive Plasma Electrolytic Oxidation Coatingscitations
- 2019Incorporation of halloysite nanotubes into forsterite surface layer during plasma electrolytic oxidation of AM50 Mg alloycitations
- 2019LDH Post-Treatment of Flash PEO Coatingscitations
- 2019LDH Post-Treatment of Flash PEO Coatingscitations
- 2018Corrosion behaviour of as-cast ZK40 with CaO and Y additionscitations
- 2017Role of Phase Composition of PEO Coatings on AA2024 for In-Situ LDH Growthcitations
- 2017Characterization and corrosion behavior of binary Mg-Ga alloyscitations
- 2016PEO of rheocast A356 Al alloy:energy efficiency and corrosion propertiescitations
- 2016PEO of rheocast A356 Al alloycitations
- 2015Degradation behavior of PEO coating on AM50 magnesium alloy produced from electrolytes with clay particle additioncitations
- 2014Galvanic corrosion of rare earth modified AM50 and AZ91D magnesium alloys coupled to steel and aluminium alloyscitations
Places of action
Organizations | Location | People |
---|
article
Corrosion behaviour of as-cast ZK40 with CaO and Y additions
Abstract
The microstructures of as-cast ZK40, ZK40 with 2% (mass fraction) CaO and ZK40 with 1% (mass fraction) Y were investigated, and the intermetallic phase morphology and the distribution were characterised. By having discrete intermetallic particles at the grain boundaries for the ZK40, the microstructure was modified to a semi-continuous network of intermetallic compounds along the grain boundaries for the ZK40 with CaO or Y additions. The CaO was not found in the microstructure. However, Ca was present in Ca2Mg6Zn3 intermetallic compounds which were formed during casting. Hydrogen evolution and electrochemical impedance spectroscopy tests revealed that the addition of CaO slightly enhanced the corrosion resistance whereas Y had a negative effect on the corrosion resistance of ZK40. Immersion tests showed that severe localised corrosion as well as corrosion along the intermetallic compounds played an important role in the corrosion process of ZK40–Y whereas the localised corrosion was not pronounced for ZK40 or ZK40–CaO alloys. Micro-segregation in the α-Mg matrix was notably higher for the ZK40 alloy compared with the modified alloys. The combination of this effect with a possible formation of a more stable corrosion layer for the ZK40–CaO was attributed as the main reason for an improved corrosion resistance for the ZK40–CaO alloy.